

AFRL-RH-WP-TR-2012-0094

ANALYST PERFORMANCE MEASURES, VOLUME I:

PERSISTENT SURVEILLANCE DATA PROCESSING,

STORAGE AND RETRIEVAL

Ed Wasser

Dr. Sanjay Boddhu

Niranjan Kode

Telford Berkey

Qbase, LLC

2619 Commons Boulevard

Dayton OH 45431

SEPTEMBER 2011

Final Report

Distribution A: Approved for public release; distribution is unlimited.

AIR FORCE RESEARCH LABORATORY

711
™

 HUMAN PERFORMANCE WING,

HUMAN EFFECTIVENESS DIRECTORATE,

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433

AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the 88th Air Base Wing Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained
from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RH-WP-TR-2012-0094 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

 //Signature// //Signature//
___________________________ ________________________________
BRIAN TSOU LOUISE CARTER, Ph.D
Work Unit Manager Forecasting Division
Human Analyst Augmentation Branch Human Effectiveness Directorate
 711th Human Performance Wing
 Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

01-Sep-2011
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June 2009 – September 2011
4. TITLE AND SUBTITLE

Analyst Performance Measures, Volume I:

Persistent Surveillance Data Processing, Storage and Retrieval

5a. CONTRACT NUMBER

FA8650-09-6939 0005
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

65502F
6. AUTHOR(S)

Ed Wasser

Dr. Sanjay Boddhu

Niranjan Kode

Telford Berkey

y

5d. PROJECT NUMBER

7184
5e. TASK NUMBER

0005

5f. WORK UNIT NUMBER

 7184X18W
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Qbase, LLC

2619 Commons Boulevard

Dayton OH 45431

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) & ADDRESS(ES)

Air Force Materiel Command Forecasting Division
Air Force Research Laboratory Human-Analyst Augmentation Branch
711th Human Performance Wing Wright-Patterson AFB OH 45433
Human Effectiveness Directorate

10. SPONSOR/MONITOR’S ACRONYM(S)

711 HPW/RHXM

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

AFRL-RH-WP-TR-2012-0094

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

88ABW/PA cleared on 10 July 2012, 88ABW-2012-3865

14. ABSTRACT

The Air Force is seeking innovative architectures to process and store massive data sets in a flexible and open
platform – with real-time, forensic and predictive analytic capabilities. The architecture and design work
described herein is being developed to anticipate applications that are highly relevant for both national security
and environmental defense. Characteristics of this architecture include robustness, flexibility, and scalability. To
accomplish this, novel event collaboration message based architecture is proposed.

15. SUBJECT TERMS
16.
17. SUBJECT TERMS
Persistent Sensor Storage Architecture, Extensible Messaging & Presence Protocol, Geographic Information
System, Distributed Common Ground System, Cursor on Target
16. SECURITY CLASSIFICATION OF:

UNCLASSIFED
17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

131

19a. NAME OF RESPONSIBLE
PERSON

Mr. Brian Tsou

Brian Tsou a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER
(include area code)

NA
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

i

ii

THIS PAGE LEFT INTENTIONALLY BLANK

iii

TABLE OF CONTENTS

Section Page

List of Figures .. vii

List of Tables .. ix

1.0 SUMMARY ... 1

2.0 INTRODUCTION.. 4

2.1. Overview and Scope ... 4

2.2. Scope ... 5

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES.. 6

3.1 Architecture Overview .. 6

3.1.1. Acquisition... 7

3.1.2. Ingestion .. 7

3.1.3. Exploitation ... 7

3.1.4. Retrieval... 8

3.1.5. Visualization .. 9

3.1.6. Storage ... 9

3.1.7. Summary .. 10

3.2 Persistent Sensor Storage Logical Architecture .. 10

3.2.1. Overview ... 10

3.2.2. Pluggable Components .. 14

3.2.3. Ingestion Services .. 14

3.2.4. Application Services .. 16

3.2.5. Storage Services .. 17

3.2.6. Dissemination Components ... 18

3.2.7. Core Services ... 18

3.2.8. Directory Service ... 19

3.2.9. Scheduler Service .. 20

3.2.10. Node Management Service .. 20

3.2.11. Health Monitoring ... 21

3.2.12. Configuration Management Service .. 21

3.2.13. Event Logging Service .. 22

3.3 Component Metadata .. 22

iv

3.4 Event Topic Definition ... 22

4.0 RESULTS AND DISCUSSION .. 25

4.1 Reference Implementation – SDK, Components and Demonstration 25

4.1.1. Overview ... 25

4.1.2. PSSA SDK ... 25

4.1.3. Setup and Teardown API Calls ... 26

4.1.4. PSSA Message Format and Utility API Calls ... 28

4.1.5. Implemented Sample PSSA Components ... 37

4.1.6. PSSA Collaboration Services .. 54

4.1.7. PSSA SCALABILITY .. 55

4.2 Interoperability .. 57

4.2.1. Open Layered Sensing Testbed (OpenLST) .. 57

4.2.2. MATLAB

Integration ... 58

4.2.3. Sensor Web Enablement (SWE).. 58

4.2.4. Distributed Common Ground System (DCGS) ... 59

4.2.5. Cursor on Target (CoT) ... 59

4.2.6. Qbase Data Transformer (QDT)
™

 ... 59

4.3 Usage Scenarios - Environmental Monitoring .. 59

4.3.1. Moisture Flux Assessment ... 59

4.3.2. Environmental Disaster (Oil Spills) Background .. 64

4.4 Usage Scenarios - Intelligence, Surveillance and Reconnaissance 69

4.4.1. Homeland Security .. 69

4.4.2. Premises Security (Video Surveillance) .. 70

4.4.3. Pinpoint – Audio Localization Using Smartphones .. 73

4.4.4. iStream – Using A Smartphone as a Real-Time Video Sensor 74

5.0 CONCLUSIONS AND RECOMMENDATIONS .. 77

5.1. Dissemination Services ... 78

5.2. Core Services .. 78

5.3. Processing Services ... 79

5.4. Communication Services .. 79

5.5. Hardware and Networking .. 79

5.6. Commercialization .. 80

6.0 REFERENCES ... 81

v

APPENDIX A – PSSA Dashboard Reference Implementation .. 83

APPENDIX B – Tutorial for Building PSSA Components (SDK Reference Implementation) ... 95

APPENDIX C – JAVA Bindings for PSS SDK .. 105

APPENDIX D – Synchronization Issues .. 108

LIST OF DEFINITIONS ... 117

LIST OF ACRONYMS ... 118

vi

LIST OF FIGURES

Figure Page

1 Conceptual View of the PSSA .. 6

2 Logical View of the PSSA .. 11

3 Key Components of the PSSA .. 12

4 PSSA SDK Interface ... 26

5 PSSA Event Message Structure .. 28

6 PSSA Registration Process ... 33

7 PSSA Directory Service Notification Event ... 35

8 Video Image Ingestion .. 39

9 Multiple Simultaneous Video Sensor Feeds Supported by Media Storage Service 45

10 MSRS Chunking Strategy ... 46

11 RTSP Video Dissemination Service ... 48

12 PSSA Data Storage Service .. 49

13 PSSA-XMPP Bridging Service ... 51

14 PSSA Integration with OpenLST .. 53

15 Remote Service Launcher ... 54

16 PSSA Collaboration Approach ... 55

17 Integration of Multiple PSSA Clouds ... 56

18 Multi-Cloud connectivity .. 57

19 Region of Study .. 60

20 Scintillometer Sensors ... 61

21 Spectroadiometric Measurements Using Low Altitude Flight 62

22 Thermal Sensing Using Medium Altitude Flight .. 63

23 Logical Overview of the Water Management Scenario .. 63

24 Estimated Oil Boundary - 22 April ... 65

25 Estimated Oil Boundary - 30 April ... 65

26 Estimated Oil Boundary - 9 May .. 66

27 Estimated Oil Boundary - 18 May .. 66

28 Estimated Oil Boundary - 31 May .. 66

29 Logical Overview of the Environmental Scenario .. 67

30 Reference Gulf of Mexico Image Prior to Oil Spill .. 68

vii

31 Oil Detection with Hyperspectral Imaging ... 69

32 Integrated View of PSSA-Based COWPATH Demo ... 70

33 Application of PSSA to Premises Security ... 72

34 PSSA Pinpoint Solution .. 74

35 PSSA iStream Solution ... 76

36 PSSA Logical Architecture ... 78

A-1 Persistent Sensor Storage Architecture with PSSA Dashboard 83

A-2 Dashboard Screen Layout ... 84

A-3 PSSA Dashboard with Live Video Feed ... 86

A-4 Selecting a Recorded Video Stream .. 88

A-5 Viewing a Recorded Video Stream ... 88

A-6 Dashboard Displaying Information Quality Metrics .. 90

A-7 Collaboration Using PSSA<->XMPP Bridge ... 91

A-8 PSSA Dashboard Collaboration View .. 92

A-9 PSSA Dashboard Showing GeoRSS Feed .. 94

B-1 Implementation of Custom Processing Using PSSA SDK 96

C-1 Illustration of Java Bindings for the PSSA SDK .. 105

C-2 Screenshot Showing Integration with OpenLST using Java SDK 107

LIST OF TABLES

Table Page

Table D-1: Ratings of DOP Values .. 115

viii

ACKNOWLEDGEMENTS

Central State University and Qbase appreciate greatly the opportunity to contribute to solving the

important problems that this Research & Development program addresses. In addition, Qbase

would like to acknowledge and express appreciation for the input, guidance and continued support

of Dr. Robert Williams and Mr. Brian Tsou of AFRL.

1

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

1.0 SUMMARY

Over the past several years, persistent surveillance devices have advanced in design and become

increasingly useful to our nation. Federal, state and local agencies, and the private sector, are

deploying new remote-sensing devices that can capture ever-increasing amounts of data, to improve

significantly both situational awareness and decision-making. These sensing devices can contribute

greatly to:

 Environmental and climate monitoring;

 Utility generation and distribution;

 Intelligence gathering and reconnaissance;

 Law enforcement; and

 Premises security.

However, the systems currently available for data capture and storage are disconnected and

disjointed, which sharply decreases their utility. Also, they have very limited storage capacity.

These shortcomings make it difficult to analyze and correlate data captured across multiple sensors.

And, it‘s impossible to store enough data online, for long enough, that analysts can efficiently detect

patterns and fully understand potentially important changes in the physical environment, geographic

terrain and atmospheric and climatic conditions.

Compounding the problem is the physical and virtual separation of expert analysts, divided by the

same ―stovepipes‖ where the sensing data is stored. Consequently, experts in climate change,

national defense and other domains now lack a reliable, collaborative pathway into the significant

data collections gathered from remote-sensing systems. The experts could improve their

interpretations of data sets markedly – and improve decision-making -- if they could access and

share remote-sensing data broadly, utilizing a common interface for observation and analysis.

Much like modern medical radiology now allows luminary diagnosticians to read radiographic

images anywhere in the world, a new remote-sensing architecture and platform could broaden

access to the best experts, regardless of their physical location. Additionally, a common platform

could offer better opportunities for securing information more comprehensively, with tiered access

on a more consistent, need-to-know basis than is now possible with the existing, disjointed systems.

The U.S. Air Force Research Laboratory (AFRL) has contracted with Qbase and Central State

University to research and design technological solutions to address these important challenges.

The Air Force is seeking innovative architectures to process and store massive data sets in a flexible

and open platform – with real-time, forensic and predictive analytic capabilities. All of the design

work is being undertaken to anticipate applications that are highly relevant for both national

security and environmental defense.

The initial phase of this project focused on the architecture and design of an architecture — the

Persistent Sensor Storage Architecture (PSSA) to support these types of applications. In addition, a

reference implementation of the architecture was developed to demonstrate the capabilities and

applications of the architecture. The reference implementation included two demonstration

capabilities, one for environmental data exploitation and the other, for video surveillance. Briefly,

the proposed new architecture features:

2

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 High capacity, high throughput computing at attractive costs, well below comparable

production-system operations;

 Low cost commodity hardware, coupled with a custom high-performance parallel file

system and a flexible software framework;

 A fault-tolerant, high performance parallel file system that will allow very large volumes

of sensor data to be maintained in online storage for extended periods of time, at a cost

that approximates that of offline storage;

 And, a light-weight infrastructure that allows ingestion of sensor data and new

exploitation components, to be developed quickly and easily, and then plugged into the

system — plus rapid deployment with existing sensors and technologies.

At the Tec^Edge Innovation and Collaboration Center, AFRL has already leveraged the reference

implementation that Qbase created in this initiative as part of the Summer at the Edge (SATE)

program. College undergraduate and graduate students utilized the PSSA reference implementation

to demonstrate applications of layered sensing to monitor disease outbreak among farm animals for

the Ohio Department of Agriculture (ODA) and to demonstrate the use of smart phones to collect

and display sensor data.

Based on the work already accomplished in this project, four examples of applications that could be

built from the new architecture are outlined below:

Persistent Surveillance Platforms – Improvised Explosive Device (IED) Detection and

Intervention. Faster identification and disarming of IEDs could save the lives in theatres of

operations. By comparing prior data to live data from visual and ground penetrating sensors,

change detection algorithms could more readily alert analysts to the potential locations of IEDs.

Live surveillance video and infrared imagery could highlight personnel activity patterns at locations

and times that are known to be indicative of IED placement. After discovery of IEDs on the

ground, historical video analysis could enhance discovery of who the bombers were, and from

where they travelled to plant devices.

Environmental Remote Sensing – Maritime Oil Spill Response. The new computing platform

could combine satellite imagery, data from remotely deployed environmental/meteorological buoys

and on-scene sensor data. The integrated information would provide decision-makers who are

responsible for directing spill containment and clean-up actions a common-operating-picture of the

crisis. Analysts and others could track and trend more effectively surface and sub-surface oil plume

propagation, in combination with information about threatened locales, assets and wildlife. Barriers

and booms could be more optimally deployed to protect eco-sensitive regions prior to

contamination.

Video Surveillance – Major Metropolitan Transit Systems. Persons carrying suspect parcels

could be identified more easily, and, parcels that become separated from their owners could be

highlighted, as well as providing enhanced tracking of where the departing owners went. Abnormal

patterns of traveler behavior could trigger enhanced video monitoring to include facial recognition

and comparison to high-interest suspect databases. Immediate replay of events could identify pre-

event target definition for searches throughout the system‘s video archive for similar targets or

behaviors.

3

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Environmental Remote Sensing – Freshwater Resource Management. Combining satellite and

ground-based sensor data, systems could report actual irrigation and domestic water needs to

determine levels of necessary reservoir-release rates -- versus arbitrary quotas. More accurate and

current evaporation rates and oxygen levels in downstream waterways could determine the need for

increased flow rates of freshwater -- or justify retention for later discharge, to ensure susceptible

aquatic life is sustained.

This Interim Report also summarizes key components of a proposed $3 million second phase. It

would deliver initial operational functionality of the PSSA solution for a selected U.S. military

service or Federal civilian agency within one year of award.

4

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

2.0 INTRODUCTION

2.1 Overview and Scope

This document addresses the technology, architecture, and design issues associated with the

processing, storage and retrieval of large amounts of sensor data generated in rapidly expanding and

changing persistent surveillance and layered sensing scenarios. Newly developed sensors for wide-

area persistent staring continue to increase the size, density and frequency of data being captured.

This, coupled with the ever increasing deployment of ground based sensors, requires new and

innovative techniques for storing, processing, and querying the massive amounts of data being

generated. The large amount of data overwhelms traditional processing, storage and retrieval

systems.

Today, limited pre-processed data can be viewed in real time, but if a segment of data from a past

date and time is required for analysis, the user generally cannot access it because the existing real-

time systems do not store it. Further, more complex processing or exploitation algorithms cannot be

run against the data stream for analysis, due to the enormous size and relatively slow throughput

rate of the data. Additionally, appropriate metadata and geo- spatial/temporal search & retrieval

techniques do not exist for these datasets.

This document will describe the capability to capture a deep archive of sensor data from a variety of

different sensor types indexed in space and time that can be quickly and easily searched to support

real-time, forensic, and anticipatory exploitation algorithms. Metadata and results generated by

these algorithms can also be stored and indexed with the original sensor data to provide a rich set of

data for communicating the quality level of the data as well as how much the results of the

exploitation algorithms can be trusted. The data captured by this system can also be used for

research, simulation and demonstration purposes.

There are a wide variety of scenarios for persistent surveillance and layered sensing ranging from

military support and homeland security to commercial site security and environmental monitoring.

However, in all of these scenarios there are some common requirements that this architecture

attempts to address:

 Continuous long-term storage of sensor data

 Real-time monitoring and exploitation of the sensor data stream

 Rapid temporal and spatial retrieval and processing of stored sensor data

 Flexible ingestion interfaces to support new sensors and sensor platforms as they

become available

 Standards-based visualization interfaces to support new and existing visualization tools

 Temporal and spatial consistency in the data captured by different sensors with

overlapping fields of view.

The PSSA presented in this document is intended to co-exist and enhance the capabilities of

existing sensor data processing architectures not replace them. Through the use of industry

standard interfaces and a plug and play approach to extending the system, it is expected that this

storage architecture can be extended and leveraged as the core storage and processing platform for

all future persistent surveillance or layered sensing needs. While many existing sensor architectures

5

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

focus on either real-time exploitation or forensic analysis, the architecture we put forward in this

document is intended to address both needs in an optimal manner and to provide a framework to

support the pressing need for performing predictive analysis using sensor data from a variety of

different sources.

With this architecture we also provide the support necessary to communicate the quality of the

information captured by the sensor and subsequently generated by exploitation algorithms as well as

the level of trust associated with the data based on trust metrics captured by the processing

components of the system, and functionality that provides secure, tiered access and defined

entitlement rights.

2.2 Scope

This document focuses on concepts and issues that are relevant to a Persistent Sensor Storage (PSS)

system in a layered sensing environment and presents a logical architecture that addresses many of

the needs that are not being met by existing ―stovepipe‖ sensor management systems. The

document also describes how the architecture can be applied to address different types of scenarios

in which persistent surveillance is required or desirable.

As part of the research effort to define and test the concepts developed for this architecture, Qbase

developed a prototype implementation to demonstrate many of the concepts outlined in this

document. This prototype includes basic implementations of several of the core components of the

architecture including the directory service component, a remote launcher component, a streaming

media storage component, a text/metadata storage component, the messaging system, and the PSS

Software Development Kit (SDK). Using the PSS SDK, we also developed reference

implementations of ingestion services, application services, and dissemination services.

This section describes the architecture that was developed over the course of the project to meet the

needs and objectives discussed earlier. We start out with a high-level architectural overview

describing the concepts associated with Persistent Surveillance Data Processing, Storage and

Retrieval. We then present a more detailed view of the issues and concerns that we identified and,

specifically, what functionality we determined to be required to field a system that addresses these

issues.

6

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Architecture Overview

The following diagram provides a conceptual overview of the key processes required of a sensor

processing system:

Figure 1: Conceptual View of the PSSA

The PSSA supports persistent surveillance activities by providing a platform for storing, processing,

and disseminating data captured via remote sensors. As depicted above, storage is central to our

architecture. The storage subsystem provides a scalable, high performance, fault- tolerant and

flexible repository for all of the sensor data ingested into the system. The ring around the storage

subsystem represents a messaging capability that allows sensor data to be simultaneously

communicated synchronously or asynchronously to all of the other services surrounding the storage

subsystem.

Services can be ―plugged‖ into this messaging backbone (or ―message bus‖) as needed to support

new sensors and sensor processing without having to rebuild or even shut down the system.

Services defined as part of the PSSA (dark gray items) provide the means for sensor data to be

ingested, exploited, stored and retrieved. Although storage is central to the PSSA, the other

services are optional and can be plugged into or removed from the PSS system without affecting

any other service or requiring shutdown or restart of the system. Acquisition and Visualization

Services (beige items) can be developed for specific sensor applications and connected directly to

the PSS message bus or communicate with the system via standard or customized Ingestion and

Retrieval services. These services are described in more detail below:

7

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

3.1.1. Acquisition

Acquisition platforms are the hardware and software required to capture the sensor data and

metadata and transform it into a digital data stream (or file) that can be processed and stored within

the PSSA. This includes the physical sensors as well as any onboard or ground based processing

components used to transform sensor data and associated metadata from the physical sensor device

to a digital electronic format. This component of the sensor processing system is typically provided

by the sensor manufacturer or operator. As a result, the PSSA must provide a flexible mechanism

for interacting with acquisition components to process and store the sensor data captured by these

components. In the PSSA, the interaction with the acquisition platform is the responsibility of the

ingestion services.

3.1.2. Ingestion

The ingestion services are responsible for importing the digital data generated by sensors and their

associated processing systems into the PSS system. These services are the point of entry for

external data to the PSS system. An ingestion end-point is required for each type of digital data

stream fed into the system. These end-points support a multitude of different digital data formats

(encoded video streams, compressed imagery, encoded audio streams, text, etc.) and protocols

(Transmission Control Protocol (TCP)/Internet Protocol (IP), Hypertext Transport Protocol

(HTTP), Real-Time Streaming Protocol (RTSP), etc.).

If a new sensor is added to the system, either an existing end-point is used (if the data format and

protocol is already supported), or a new end-point is developed to support the new data format and

protocol. After data is ingested by the ingestion service, it is immediately made available to the

other components of the PSSA. Thus, an application service can operate on the data immediately to

perform any exploitation operations while a dissemination service waiting for the raw data can

immediately push it out to a visualization platform. There are two methods for ingestion of data

into the system:

 Asynchronous (push) – this type of ingestion relies on the acquisition system to provide

data. The acquisition system connects to the ingestion component and sends sensor data

as it becomes available. Alternatively the acquisition system ―broadcasts‖ sensor data to

a well-known destination (broadcast socket, file system directory, etc.) that the ingestion

component is monitoring.

 Synchronous (pull) – this type of ingestion component periodically polls the acquisition

system for new data. The ingestion component connects to the acquisition system on a

periodic basis to get the latest sensor data.

The ingestion component is responsible for formatting, packaging and publishing the sensor data

being brought into the system so that it can be accessed by other components of the system.

Processing and storage of the sensor data is handled by application services and data services

specifically designed to perform those tasks.

3.1.3. Exploitation

Exploitation within the PSSA is performed by Application Service Components. Application

services are the core processing components of the PSSA. These services subscribe to specific

sensor data in order to assess, enhance, and transform it. Transformation includes such tasks as

8

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

projection of data to a new coordinate system or combining data from multiple sources to generate

new data (e.g. using satellite imagery and weather data to calculate moisture flux) or utilizing

reference imagery to create a geo-registered image. Enhancement includes such tasks as running

image processing algorithms to improve the color, brightness, contrast, sharpness, etc. of the data or

utilizing external data sources such as Differential Geographic Positioning System (DGPS) or

Continuously Operating Reference Stations (CORS) to improve the accuracy of the Geographic

Positioning System (GPS) location information.

Assessment includes such tasks as examining the data to provide quality and trust metrics, applying

algorithms to detect objects, utilizing data collected previously or by other sensors to detect moving

objects, etc. Application services also include purpose built algorithms such as target identification,

tracking algorithms, threshold alerting, etc. required for specific sensor applications. These

services can be plugged into the messaging architecture and immediately begin processing data

streams generated by the ingestion services or other exploitation services.

One of the goals of our architecture is to allow exploitation algorithms to operate on the data

without impacting the real-time performance of the system. To accomplish this, the architecture

will support simultaneous distribution of data to visualization components and exploitation

components as well as the dynamic distribution of processing across nodes in a cluster of computing

systems.

The architecture also supports exploitation tuning capabilities. These are control messages that can

be sent to the exploitation algorithm to adjust the way it performs its processing. For example:

adjusting the sensitivity/quality of the algorithm, overriding automatic/default settings, zeroing-in

on particularly interesting data for enhanced processing.

The exploitation components are responsible for publishing the data resulting from the application

of their algorithm(s) so that other components of the system can access it.

3.1.4. Retrieval

Retrieval of data from the PSSA for distribution to external systems or for visualization by end-

users is handled by dissemination services. Dissemination services provide data to end users or to

external systems through the use of custom or standards-based interfaces.

The dissemination components are responsible for providing an efficient mechanism for locating

and retrieving data stored in the PSSA-based system (typically using PSSA Data Storage Services)

and for either displaying this data to the end-user or for making it available to an external system —

such as Google Earth, the Video LAN Client (VLC) media player, and the Environmental Systems

Research Institute corporation‘s (ESRI) ArcGIS product — to process or display.

Dissemination components may implement standards-based interfaces as well as purpose-built

interfaces to meet the specific needs of consumers of the persistent surveillance data. Examples of

standards based interfaces include Open Geospatial Consortium (OGC) Web Feature Service

(WFS) for vector-based Geographic Information System (GIS) data, OGC Web Mapping Service

(WMS) for raster-based GIS data, RTSP for streaming video, etc. These services also provide

intelligent caching of the data to minimize processing time associated with retrieving data. Open

source GIS Servers such as GeoServer and MapServer can be easily modified to act as PSSA

9

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

dissemination services by plugging these tools into the PSSA messaging system using the PSSA

SDK.

3.1.5. Visualization

There are numerous commercial and open source GIS and media visualization tools that can be used

to retrieve and display PSS data by virtue of the support of OGC and other industry standards

provided by dissemination components. Examples of such tools include Google Earth, Quantum

GIS, VLC Media Player, NASA WorldWind, ESRI ArcGIS and many others.

Open source GIS and media visualization software can also be modified to display data ingested

and processed by PSSA components in near real-time by connecting this software directly into the

PSSA messaging system using the PSSA SDK.

3.1.6. Storage

Data Storage Services (DSS) provide a high-level interface to the storage and retrieval of data so

that processing components do not have to know the details of how or where the data is stored.

Three types of DSS are defined in the PSSA:

 Media Storage Services are used to store and retrieve raster data and long-

running/continuous streaming media data to the high speed parallel file system. The

media storage services work in conjunction with the Internal Data Storage services to

make sure raster and streaming media data is spatially and temporally indexed in the

spatial database.

 Internal Data Storage services are used to store and retrieve text-based sensor data,

metadata and vector data ingested by or generated by other components of the PSSA

system into a spatial database. Internal Data Storage services work in conjunction with

the Media Storage Services to insure that raster data stored in the high speed parallel file

system is properly linked to its associated metadata.

 External Gateways are Data Storage services designed to store and retrieve data from

external systems whose data is required to perform processing by the processing

components of the PSSA system.

The core of the PSSA is the storage subsystem. This storage subsystem is a high-performance,

fault-tolerant, clustered array of storage nodes that includes a spatial database for temporal/spatial

indexing of the data and a high-speed parallel file system for storing and retrieving large blocks of

raster data and media files.

The goal of this subsystem is to provide data to any component in the system that requests it as

quickly as possible. At the same time, it must be capable of storing the large amounts of data being

brought into the system from hundreds or perhaps thousands of sensors.

The key to this solution is the use of clustered storage nodes that work cooperatively to provide

redundant high-speed storage of data. Low-cost Serial Attached SCSI /Serial Advanced

Technology Attachment (SAS/SATA) disk arrays, solid state disks and in-memory data caching

provide storage options to address varying requirements for the cost, size, performance, and

volatility of the data. The core of the storage subsystem is a spatiotemporal database that provides

10

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

the ability to perform queries and combine and compare data based upon time and space

relationships.

3.1.7. Summary

Sensor acquisition platforms are responsible for capturing data and converting it into a digital data

format. These systems are typically provided by the sensor manufacturer. Sensor data enters the

PSSA system via standards based or purpose built ingestion services. These services are

responsible for providing a common spatiotemporal frame of reference and for packaging the data

in a standard format that can be propagated throughout the system.

A common spatiotemporal frame of reference is necessary to allow sensor data from many

independent sensors to be related in space and time for exploitation, retrieval and data fusion

purposes. Application services implement exploitation algorithms to assess, enhance, and transform

data from one or more sensors sequentially, in parallel and/or recursively to create new and

enhanced data and metadata products.

Retrieval services provide standards based and purpose built interfaces for retrieving data captured

and generated by the system using a common frame of reference to relate disparate data elements

based on time and location. Standards based retrieval services provide the ability for many

Commercial Off-The-Shelf (COTS) and open source GIS visualization tools to be used to visualize

the data stored by the PSSA system. For higher performing and more sophisticated user interaction,

custom applications can be developed that communicate with PSSA services directly on the PSSA

message bus.

3.2 Persistent Sensor Storage Logical Architecture

3.2.1. Overview

From a logical perspective, the PSSA consists of four customizable software layers: Ingestion

Services, Application Services, Data Services, and Dissemination Services. In addition, the PSSA

includes a common Core Services layer which is responsible for providing the infrastructure

required to support the integration of the components in the customizable software layers. The

PSSA SDK provides access to the services provided by the Core Services layer. The diagram

below provides a logical view of these software layers and examples of some of the components

that might be present in these software layers.

11

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 2: Logical View of the PSSA

Although the diagram, above, only shows four types of sensor sources, the PSSA is designed to

support the storage and exploitation of data from any sensor source by ―plugging‖ in new ingestion

services. Similarly, the PSSA is designed to support the distribution of sensor data and related

exploitation data to any visualization platform by ―plugging‖ in standards based and custom built

dissemination services.

The PSSA is designed to allow components in the customizable software layers to be added or

removed from the system, dynamically, without interrupting the operation of other components of

the system. This is accomplished through the use of a message bus approach. The PSSA message

bus provides the following messaging modes:

 Publish/Subscribe: Source components publish messages on the PSSA message bus as

―topics.‖ Sink components subscribe to ―topics‖ to receive messages in which they are

interested. Filters can be applied by sink components to reduce the number of messages

received by the component. Any number of sink components can subscribe to the same

―topic.‖ This is the typical communication mode for pluggable components as it allows

them to be completely decoupled from one another.

 Request/Response: A sink component issues a data request to a source component and

the source component sends its response back to the sink component. This process is

typically how components communicate with core services that are guaranteed to be

present and external gateways that are used to retrieve data from external systems.

 Stream Request/Response: A sink component requests streaming data from a source

component. The source component sends the requested data stream to the sink

component until the request is satisfied or the sink component tells the source

component to stop streaming. This process is typically used by visualization

components that want to display live or recorded streaming media.

By decoupling the components from each other using the message bus architecture, four

Persistent Sensor Storage Architecture

Ingestion

Services

Application Services Data Services Dissemination

Services

Core Services

Image Frame

Ingestor

Satellite Scene

Ingestor

Video

Ingestor

RSS Feed

Ingestor

Exploitation

Algorithms
OGC

WMS / WFS

Media Streaming

Services

Cataloging

Service

Search

Notification

Service

Management

Services

Service Registry

Directory

Services

Configuration

Services

System

Management

Services

Scheduler

Service

Storage Services

 Metadata

 Spatial

 Temporal

 Relational

 Text

OpenLST

PocketLST

(Android, iPhone)

Web and Rich Clients

UAVs

LandSat 5

Video Surveillance

Cameras

GeoRSS

UAV Ground

Station

LandSat

Server

Misc. Service

Provider

Proxies

External

Gateways

Media Data

Services

Internal Data

Services

12

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

important goals are achieved:

 Operators and developers can add and remove components from the system dynamically

without impacting other components of the system (―plug and play‖)

 Data is ―broadcast‖ to several components at the same time allowing processing of the

data to take place in parallel

 Processing is distributed across multiple compute nodes providing virtually unlimited

horizontal scaling of the system

 Sensor data becomes available for visualization as soon as it is ingested by the system --

without waiting for it to be stored and indexed

The following diagram summarizes the key components and types of services that comprise the

PSSA along with the typical flow of data into and out of the PSSA messaging system which we

refer to as the PSS or PSSA Cloud (represented by the cloud in the center of the diagram, below).

Figure 3: Key Components of the PSSA

The reason we refer to the PSSA messaging system as the ―Cloud‖ is because it hides the internal

implementation of the core services and integration mechanisms from the user developed

components of the system. Developers of PSSA components need only know the public interfaces

Published

Event

Ingestion

Service
Sensor

Data
Sensor

Application

Service

Subscribed

Event

Published

Event

Subscribed

Event

Dissemination

Service

Subscribed

Event

Local Data and

File Server
External Gateway

Data

Data

Service

Control

Channel

Control

Channel

Control

Channel

Control

Channel

PSSA Cloud

Node

Manager
System

Manager

Configuration

Manager

Directory

Service

Scheduler

Service

13

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

exposed by the PSSA SDK in order to participate in the event collaboration model of integration

used by a PSSA-based system.

A brief description of each of the software layers and their functions is provided below:

 Ingestion Services – Receive or retrieve sensor data from external sensors and bring the

data (sensor readings and associated metadata) into the PSS system. The main

responsibilities of these components are to communicate with the external sensors or

sensor systems and to make the data available to other components of the system, via the

PSSA message bus. The PSSA reference implementation provides several different

types of ingestion components that can be used as examples for creating custom

ingestion components.

 Application Services – Exploit one or more sensor data stream or exploitation data

stream and, optionally, external data sources to turn the sensed data into useful

information (e.g. identify anomalies or other data of interest, analyze the quality of the

data, improve the quality of the data, etc.). These components do not need to know how

to communicate with the sensors, but they do need to understand the semantics of the

data generated by the sensors in order to exploit it. Application service components

implement algorithms to exploit data to which it is subscribed on the PSSA message bus.

Results of the exploitation processing are published to themessage bus and are thus

available to be stored, further exploited or displayed using a visualization tool. The

PSSA reference implementation includes several examples of application service

components that can be used as examples for creating new components using the PSSA

SDK.

 Data Services – Store and retrieve data from the PSSA internal data stores and/or

external systems for use by other components of the system. A data service component

encapsulates the access to data by providing high-level message based interfaces to the

data. This allows the consumer of the data to focus on how to use the data rather than

on how to get the data. It is the responsibility of the Data service component to fulfill the

data request of the other component making the data request. Data service components

hide the details of communicating with internal and external databases and with other

sensor storage systems from PSSA components that require the data to do their

processing. The PSSA message interface to retrieve data from a data service component

will typically be a request/response message. For storing data, data service components

subscribe to the message topic for which they are responsible and perform whatever

processing is required to store the data.

 Dissemination Services – Provide standard and custom built interfaces to provide

access to data ingested by and/or stored within the PSSA system to users or external

systems. A PSSA dissemination component can either push the data to a remote system

or wait for the remote system to request the data. The PSSA reference implementation

includes several examples of PSSA dissemination components use the PSSA message

bus to subscribe to topics generated by other components of the system. Typically, the

interfaces provided by these components utilize a synchronous request/response message

mode to send data from the PSSA based system to other systems. However, some

dissemination components support the retrieval of live data as well as previously stored

14

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

data using the stream request/response message mode. In addition, a dissemination

component can be developed to provide event notifications or alerts asynchronously

when certain events occur.

 Core Services – Provide the infrastructure required to connect the other components of

the system together and to store the data ingested by the system. This infrastructure

includes a directory service that allows sensor processing components to be dynamically

added to and removed from the system; a scheduling service to ensure optimal use of the

computing resources by load balancing and sequencing tasks; a message bus for moving

data between components of the system; a configuration and management service to

allow processing components and compute nodes to be added and removed from the

system; and a storage service to provide storage, indexing, and association of data

required by the system.

The following sections describe these components in more detail.

3.2.2. Pluggable Components

One of the key characteristics of the PSSA is the support of dynamic ―pluggable‖ components.

What this means is that new components developed using the PSSA SDK can be added to the

system simply by ―dropping‖ the component assemblies into the appropriate PSS component

directory. When a new component is detected, the assembly is loaded and registered within the

system. This process includes the registration of message bus topics associated with that

component and, optionally, the creation of one or more database tables in which data associated

with the new component will be stored.

There are four core types of components that can be ―plugged‖ into the architecture: ingestion

services, application services, data services and dissemination services. When a new sensor is

added to the system, the installation package may include all four types of pluggable components in

order to provide a complete processing and distribution stream for the sensor data. At a minimum,

a new sensor will provide an ingestion component. Visualization tools can use the PSSA message

bus or existing dissemination services to display the data generated by the sensor. As new

exploitation algorithms are developed for the sensor, they can be plugged into the system. If

specialized dissemination services are required to take full advantage of the sensor and its related

exploitation algorithms, these can be plugged into the system as well. It is important to note that all

of this activity and these operations can take place without shutting down the system or stopping the

flow and exploitation of data from other sensors in the system. This capability is essential for a

24x7 production environment.

3.2.3. Ingestion Services

Ingestion services are software modules that receive sensor data from remote sensors and transform

that data into one or more ―topics‖ on the PSS message bus. The builder of an ingestion service is

responsible for writing the code that will connect the sensor to the ingestion component endpoint.

There are two modes of connecting to the sensor: synchronous/pull mode and asynchronous/push

mode. In the synchronous mode, the ingestion service establishes a connection to the sensor and

periodically polls the sensor for new data. This activity is referred to as ―pulling‖ data from the

sensor. In the asynchronous mode, the ingestion service either registers itself with the remote sensor

15

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

or the remote sensor is configured to connect to a well- known endpoint provided by the ingestion

service. After the connection is established, the ingestion component waits for the remote sensor to

send data. This is referred to as the remote sensor ―pushing‖ data to the ingestion service. It is

expected that there will be a need for ingestion services to have some type of configuration data to

specify the information needed to connect to the remote sensor or to configure the endpoint by

which remote sensors will connect to them.

The designer of the ingestion service is responsible for defining the format of this configuration

data and the means by which the data will be retrieved (e.g. data file, Uniform Resource Locator

(URL), database connection, message bus, etc.). Another responsibility of the designer of an

ingestion service is to define the format of the ―topic‖ or ―topics‖ that the ingestion service will

generate when data is received from the remote sensor.

After a new sensor ingestion service is added to the system, one or more physical sensors can be

configured which will use that ingestion service to capture data generated by the sensor. When a

physical sensor is added, the ingestion service that will process data from that sensor is specified.

Subsequently, when the physical sensor is activated, an instance of the ingestion service is launched

to begin capturing data from that sensor.

NOTE: Ingestion services can be designed to handle multiple physical sensors simultaneously or a

single sensor per instance. Which approach is taken depends largely on the nature of the sensor

and the frequency and volume of data expected.

A key part of the design of the ingestion service is the definition of the message bus ―topics‖ used

by the component and the mapping of this data to a database schema. The PSS Core Services

includes a generic storage service that will map the data elements defined in the message bus topic

to a corresponding database table. This service uses the topic name and data elements to map the

data to the appropriate database table and columns. As a result, specific naming conventions and

data elements are required to be part of the message ―topic.‖ These requirements are outlined later

in this document. If specialized data storage and retrieval processing is required, the ingestion

service‘s installation package must include the software modules to perform this processing.

In order to provide a common context and frame of reference for the data stored within the PSS

system, all ingestion services are required to include location and time metadata within their

message bus ―topics.‖ This metadata is used to synchronize sensor data from disparate sensors for

exploitation and visualization purposes. More information on the issues associated with spatial and

temporal synchronization can be found in Appendix D – Synchronization Issues.

For ingestion services that generate streaming video feeds, the PSS Core Services includes a Media

Storage Service that supports the storage and retrieval of video streams. This service ―chunks‖ the

video stream into files of a predetermined playback length (e.g. five minutes) for storage purposes

while at the same time providing a logical view of a single contiguous media stream. Gaps in the

media stream are provided to visualization tools as metadata that can be used to indicate time

periods for which no data was collected. The Media Storage Service can also provide seamless

transition between live playback and previously recorded video.

16

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

3.2.4. Application Services

Application services are software modules that apply algorithms to analyze and/or combine data

from one or more of the following sources to create new and useful information:

 Live sensor feeds

 Data from other application service components

 Previously recorded sensor data

 Current and historical data from other (external) systems

For example, an application service can be used to compare a real-time image with reference

imagery to attempt to geo-locate the real-time image or to compare sequential video frames looking

for moving targets or to analyze one or more video frames to establish quality metrics such as noise

or blur. Another example is a moisture flux algorithm that uses data from satellite imagery, ground

based sensors, and an external weather service to calculate moisture flux values for the region

covered by the satellite imagery. The PSS architecture does not natively define any application

services since the implementation of these components is necessarily application specific.

However, the PSSA does provide support in the SDK for the development of such components as

well as several reference implementations that can be used to get started.

Application services typically fall into one or more of the following categories:

 Exploit – the service creates new data as a result of running algorithms against the input

data (e.g. detecting an object within an image). Typically, a new topic is created and

published to the message bus.

 Transform – the service changes the format or data type of existing data to normalize it

or make it more useful to other application services (e.g. warping an image to a new

coordinate system). In this case, the same topic is typically reused; however, the data

and metadata will be changed to reflect the transformation of the data.

 Enrich – the service increases the value of the data by improving/enhancing the data or

the metadata associated with the data (e.g. measuring the quality of the data and adding

quality information to the metadata, improving the accuracy of location metadata by

applying geo-registration/photogrammetric techniques to the data, improving color of

image data using white-balance or radiometric corrections). Similar to transformation,

the same topic will typically be reused; however, as a result of this processing, the

metadata and perhaps even the sensor data will be more accurate and complete.

 Filter – the service subscribes to a single input event and generates a single output

event.

 Aggregate – the service subscribes to multiple input events and combines the data from

each of the events to enrich, transform, or exploit the data in some meaningful way.

This may result in one or more output events.

 Split – the service subscribes to a single input event but generates multiple output events

in the process of enriching, transforming, or exploiting the data.

17

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

The designer of an application service component must know the format of the message bus

―topics‖ for the primary data source (sensor or other application service) and, if required, the

request/response protocol used to retrieve data from other components of the system. A message

from the primary data source will be the event that triggers execution of the application service

exploitation algorithm. If previously recorded data from the PSS storage subsystem or an external

gateway is required, then appropriate request/response messaging must be designed to retrieve the

data. The designer of the application services may need to build application specific storage

components to retrieve this data from the appropriate source. If these components are required by

the application service, they should be included as part of the application service installation

process.

3.2.5. Storage Services

Data Storage Service: The storage service provides a flexible mechanism for storing and retrieving

data generated by the ingestion and application service components of the system. The generic

storage mechanism monitors the PSSA message bus for topics and source ids that are identified as

persistent. The topic name is used to identify the table in which the contents of the message are

stored. The contents of the message are then examined matching attribute names in the content

portion of the message with column names in the target table and the corresponding values from the

content portion of the message are extracted to insert a new row in the target table.

For many topics, this capability is sufficient for storing the data. However, for more complex

topics, it may be necessary to provide specialized components to store the data. These components

are dynamically loaded as needed to process persistent topics that cannot be handled by the generic

storage component.

Similarly, a generic data retrieval component is provided as part of the storage service to retrieve

previously stored data based on time range, location, and/or source sensor. For data generated by

application services, the source is the sensor that generated the data exploited by the application

service. The generic retrieval component operates on a single topic and returns data in the same

format as the original message. For some complex topics, it may be necessary to provide

specialized components to retrieve the data required to format the response.

Media Storage Service: For streaming media data, a special storage service is provided called the

―Media Storage Service.‖ This component creates a logical abstraction that isolates the

visualization platform from any knowledge of how the media stream is physically stored within the

system. From the perspective of the visualization platform, the stored media stream looks like a

continuous stream of data -- despite the fact that it is actually broken up into a series of smaller

files.

The Media Storage Service also has the ability to ―normalize‖ the incoming video stream to a

standard media encoding and compression (currently we are using Moving Pictures Expert Group

(MPEG)-4) before placing the data on the PSSA message bus. The PSSA SDK provides MPEG-4

encoding and decoding capabilities so that application services can exploit the media stream in a

standardized manner regardless of the encoding format used by the source sensor, if any. In

addition, use of the MPEG-4 standard significantly reduces the amount of bandwidth utilized on the

message bus and the physical storage space required to store the stream on disk.

18

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

External Gateway: External gateways are typically developed to support the needs of a specific

application service, however, in some cases these gateways may be generic enough to be used by

many different applications (e.g. weather data, census data, certain environmental data). In order to

leverage these external gateways across multiple applications, we decided to decouple them from

the application services code and allow them to standalone. Application services request data from

the external gateways through a well-defined request/response protocol. This protocol is made

public so that other application services and, in some cases, dissemination components may issue

similar requests for the data.

The designer of an external gateway should be responsible for defining the request/response

protocol that will be used to retrieve the data and for implementing the software that connects to the

external system to retrieve the data. The protocol should support as broad a set of data requests as

possible in order to maximize the usefulness of the gateway across applications.

3.2.6. Dissemination Components

Dissemination components are software modules designed to retrieve information from the PSS

Storage system or in some cases to push real-time data feeds to third party visualization tools. The

PSS SDK supports the development of ―integrated‖ visualization tools such as the PSS dashboard

application or the Open Layered Sensing Testbed (OpenLST). These tools subscribe to ―topics‖ on

the PSS message bus to provide tightly integrated, high performance visualization of the data

generated by the ingestion and application service components.

However, in many cases, it is desirable to use COTS or unmodified open source tools to view the

sensor data. For that purpose, a number of dissemination components are included in the PSS

reference implementation including a RTSP media server for broadcasting streaming video to RTSP

clients and GeoServer to support WFS and WMS requests for spatial data. Other dissemination

components can be custom built as needed to support the needs of COTS/Government Off-The-

Shelf (GOTS) applications or any other visualization application that can‘t interface directly to the

PSS message bus.

3.2.7. Core Services

The PSSA Core Services provide the infrastructure to allow PSSA components to connect with and

communicate with one another. They also provide management services that allow users to monitor

the operation and performance of the system.

Dashboard and System Management Services: The PSSA Dashboard and System Management

Services provide software and a user interface to display and control the components of a PSSA-

based system. The dashboard provides the following capabilities:

 View the status of each PSSA hardware node configured within the PSSA system

 View the status of each PSSA services installed in the system including the node(s) upon

which they are installed

 Start, stop, and pause PSSA services. When a service is started, the system scheduler

determines the best node upon which to start the component. If desired, the user can

override this selection and choose a different node upon to start the service.

 Install PSSA services ―on-the-fly‖ on any compatible PSSA hardware node

 Remove PSSA services ―on-the-fly‖ from any compatible PSSA hardware node

19

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 Filter the events received by a PSSA service based on the source component from which

the event is sent. This allows the system scheduler to balance processing load, as

needed. It also allows the user to control the type of processing that occurs on a given

data stream (e.g. the user may desire that some video streams be exploited for motion

detection while others are not).

 Monitor (for diagnostic purposes) the messages generated for any topic(s) published by

components of the system.

The System Management Services described above will be built into the dashboard but will also be

provided as interfaces within the PSSA SDK to allow software developers to integrate these

capabilities into their own visualization or system management tools. The System Management

Services rely on the PSSA Directory service to keep track of all of the hardware nodes and software

services installed in the system, their capabilities and operational status.

3.2.8. Directory Service

The directory service is a key component of the core services. This service is used to track which

sensors and application services are installed and whether or not they are active

(collecting/processing data). It also lists the message bus ―topics‖ generated and consumed by each

of the sensors/application services. This allows application services and visualization tools to

dynamically subscribe to any source for which they know how to process the topic. For example,

when a user initiates an application service that exploits video streams to track vehicles, the PSSA

dashboard queries the directory service to find all of the sensors and/or application services that

generate video stream ―topics.‖

The user can then choose the video streams on which to apply the vehicle tracking exploitation

algorithm. Similarly, a user could select a sensor and be presented a list of all of the application

services that can be applied to the topics generated by that sensor. Since the ingestion components

and application services are decoupled from one another using the PSS message bus, any

application service that can process a specific message bus topic, can process data generated by any

sensor or any other application service.

As sensors and application services are added and removed from the system or taken on or off line,

visualization tools can also use the directory service interface to dynamically update the list of

sensors and application services available to the user. The PSSA dashboard is one such

visualization tool.

The directory service component also plays an important role in monitoring the health of the

system. After starting up, each PSSA hardware node generates a Node Heartbeat event at regular

intervals (nominally every 30 seconds). Each heartbeat event provides information about the

―health‖ of the node including the status of each component running on the node and the Central

Processing Unit (CPU)/Memory utilization of the node. The directory service subscribes to these

events and updates an internal state table for each of the nodes and software components. If a node

fails to send a heartbeat event within a certain period of time that node and all of the software

components running on the node are designated as ―dead‖ and an event message is generated to

notify components running on other nodes to close their connections with components running on

the ―dead‖ node.

20

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

3.2.9. Scheduler Service

Whenever a PSSA component needs to be started, the Scheduler Service is invoked to determine

which node on the network would be best suited to run the component. This is accomplished by

evaluating the relative loading — Central Processing Unit/Graphics Processing Unit (CPU/GPU)

utilization, memory, etc. — of each of the nodes on which the component is installed and the

network capacity between the component and the other component(s) of the system from which the

component will be receiving events. The goal of the scheduler service is to optimize network

performance while not overloading the computing/memory capacity of a given node. Although the

scheduler service can be expanded with a very sophisticated set of rules, initially, the following set

of rules will be used to provide simplistic load balancing:

 Ingestion Services – The least heavily loaded node on which the service is installed.

 Application and Dissemination Services – The node that the service from which it is

receiving events is running on, unless one of the following is true:

 The service is not installed on that node

 The CPU or memory utilization is greater than 80% of the capacity of the system

 If either of the above is true, then the application service will be started on the least
heavily loaded node on which the service is installed.

 Storage Services – The internal data storage service will run on the same node as the

underlying database that stores and indexes the metadata. Streaming media data storage

service(s) will be started on the least loaded node connected by high-speed networking

(Infiniband®, 10gigE, gigE, etc.) to the high-performance file system. External

Gateway data services will be started on the least loaded node upon which the gateway

service is installed. Once the node on which a component will be started is determined,

the scheduler service sends an event to the Node Management service to start the

component.

3.2.10. Node Management Service

The PSSA Node Management Service runs on each individual hardware node of the PSSA system.

It is responsible for the following activities associated with the hardware node:

 Starting/Stopping/Pausing the execution of services running on the node.

 Monitoring the status of PSSA services running on the node by subscribing to the

Heartbeat messages generated by the service components.

 Monitoring the processing activity on the node (CPU/memory utilization)

 Periodically generating a Node Heartbeat message that reports the status of the node

The Node Heartbeat message consolidates the status information from all of the services running on

the node as well as the processing activity of the node. This means that the dashboard and other

system management services only need to subscribe to the Node Heartbeat message to get a

complete picture of the operational status of the system.

21

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

3.2.11. Health Monitoring

Each component within a PSSA-based system periodically generates a heartbeat message. This

message communicates the ―health‖ of the PSSA component to the Node Management Service.

The heartbeat message is built into the PSSA SDK so that the developers of the component do not

have to worry about how or when it is generated. In most cases, they won‘t even have to know it is

there.

Each heartbeat message contains the current processing state of the component (e.g. initializing,

waiting for an event, processing an event, paused, shutting down), the results of the last event

processed (e.g. Good , Warning, Error), tallies for the number of messages received/sent and the

number of warnings/errors generated, and the average processing time per event.

Any component can subscribe to the heartbeat messages to determine whether or not a component is

still available. However, it is the responsibility of the local node manager to generate an event when

a component is determined to be ―dead.‖ This event message should be subscribed to by any

component listening for events from the ―dead‖ component so that they can close their connections.

3.2.12. Configuration Management Service

Like the Node Management Service, the Configuration Management Service runs on each hardware

node of the PSSA system. The responsibilities of the Configuration Management Service include:

 Installing PSSA services on the node

 Removing PSSA services from the node

 Collecting/storing information about the hardware configuration and software

configuration of the node. Examples of hardware/software configuration information

that might be provided:

 Number of network cards and corresponding network type (gigE, Infiniband, etc.)

and address

 # of CPU/GPU cores

 Amount of physical memory

 Operating System and version (e.g. Windows 2008 R2, Ubuntu Linux 10.10, etc.)

 Software runtime dependencies installed (e.g. Matrix Laboratory (MATLAB),

.NET, C++, etc.)

This information is used to determine whether or not a particular software service can be installed

on the node when that service is added to the PSSA-based system.

To install PSSA services, the Configuration Management Service subscribes to events generated by

the System Management Service indicating that a service is available to be installed. The event

includes a URI specifying the location of the service installation package and hardware/ software

requirements of the service. If the node is capable of running the service, the Configuration

Management service will use the URI to copy the service installation package to the local node and

initiate the installation process. If the installation process is successful, the Configuration

Management service will notify the directory service that the software component is available on

the node. Each service installation package is required to provide a removal script that can be

executed if the service needs to be removed.

22

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

3.2.13. Event Logging Service

It is desirable for a number of reasons to be able to record and playback all of the events generated

by the system including interactions with external systems. This is the responsibility of the Event

Logging Service. This service runs on each node of the PSSA system and records all of the events

that are published by components running on that node in the PSSA database. The events are stored

with the common PSSA header metadata broken out into individual columns in the database so that

they can be queried against.

Topic specific metadata and sensor payload data, if present, is stored as a blob in the database (or

possibly on the file system, if necessary). Using this data it will be possible to reconstruct a

complete message flow through the system for testing, diagnostic, and auditing purposes. The

Event Logging Service is also responsible for recording interactions with external systems through

external gateway data services. The PSSA SDK will provide Application Programming Interfaces

(APIs) to allow the Event Logging Service to hook into the communication channel between the

gateway data service and the external system so that this data can be captured.

3.3 Component Metadata

In order to describe a component to the system so that it can be registered with the directory

services, the following information must be defined for each component:

 Component Name (freeform text)

 Component Description (freeform text)

 Component Category (one of: Ingestion, Exploitation, Storage, Dissemination)

 Event Topics published by the component

 Event Topics subscribed to by the component

 Special processing needs of the component

 CPU and/or other hardware required, such as GPU, Field-Programmable Gate Array

(FPGA), Application Specific Integrated Circuits (ASIC), and so on.

 Operating System requirements (Windows 2008, Linux, Mac OS/X, etc.)

 Runtimes and/or shared libraries used (.NET, Java, MATLAB
®
, C/C++)

This information is used by the system management and node management services to determine

upon which processing nodes in a distributed processing system the software component can be

installed.

3.4 Event Topic Definition

PSSA event topics are defined by the component developer(s) to meet the processing needs of the

component. However, there are some common metadata elements included in the context section of

all event topics that is required by the PSSA-based system to index, correlate and query data across

disparate sensors in a common manner. This common metadata contained in the Event context

header includes the following data elements:

 Producer. The unique identifier of the component generating the event. This data is

automatically supplied in the context header by the PSSA SDK.

23

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 Reference Sensor ID. The unique identifier of the sensor from which the sensor reading

or derived information originated.

NOTE: This could include multiple sensors if the payload of the event contains

information derived from multiple sensors.

 Presentation Time.
*
 The Universal Time Coordinated (UTC) time index of the data

contained in the event payload. This is represented as a TimePoint structure which

includes a point in time (in UTC) and the precision associated with the time (+/-) based

on where the time originated. This is the time by which all of the data associated with

the event will be indexed. The method of determining this time may be different for

every ingestion component. In some cases the sensor may have a highly accurate time

included with the metadata it generates for each reading. In other cases, the sensor may

have no time data at all and the ingestion component must provide an educated guess as

to the time the data was acquired based on the current system time.

 Acquisition Time.
*
 The time that the data contained in the event was received or

generated by the system. Ingestion components capture the time at which the sensor

data was read/detected by the system (e.g. for a polling component, this is the time at

which the request returned with the data, for an asynchronous component, this is the

time at which the data was received, for a file detection, this is the time at which the new

file was detected). Exploitation components that generate new data use the latest

acquisition time contained within the events that were used to generate the new data (e.g.

some exploitation events may require multiple frames of data to identify an object or

they may use data from one or more different types of events). All other exploitation

components leave the acquisition time unchanged.

 Event Time.
*
 This is the time that the event was published by the component

(automatically inserted by the PSSA SDK).

 Processing Duration. This is the amount of time it took for the component to process

the data to generate the event (automatically inserted by the PSSA SDK).

 Sensor Location. This represents the (point) location at which the sensor was located

when the sensor reading was captured. Commonly this will be provided as metadata with

the sensor reading. If the sensor is attached to a non-moving platform, the location data

may be part of the configuration data for the sensor. In either case, the event message

must contain location information for indexing purposes in the database.

*
 Time is standardized within PSSA for display and for transport between components to be UTC time using the

standard ISO 8601 time representation with up to 6 decimal places of precision (e.g. 2010-10-28T20:08:25. 182302Z).

The PSSA hardware architecture specifies that a high-precision NTP server (or PTP server) be utilized within the

system to synchronize the system time on all of the computational nodes of the system. This Network Time Protocol

(NTP) server and the PSSA infrastructure software will ensure that any times requested from PSSA nodes will be

correct to within 10 milliseconds (1 µs, if a PTP server is used) of the actual UTC time at the moment the time is

requested. See Appendix D for a broader discussion of the issues associated with time synchronization and how it is

handled by PSSA.

24

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 Sensor Location Accuracy (Optional). If known, this is included as part of the

common event data.

NOTE: Downstream exploitation components may be able to improve the location

accuracy or, if the accuracy is unknown, it may be possible to estimate the accuracy of

the sensor location metadata using historical data or data from other sources. If this is

the case, a new event will be published with the corrected location metadata and/or

accuracy information.

 Footprint (Optional). This represents the coverage area of the sensor. For some types

of sensors this information may not be known at ingestion time and may be calculated

by downstream exploitation algorithms. In other cases, the footprint might be calculated

to some degree of accuracy by the sensor or sensor ground-station and included in the

metadata received by the ingestion component.

 Footprint Accuracy (Optional). If known, this is included as part of the common event

data.

NOTE: Downstream exploitation components may be able to improve the footprint

accuracy or, if the accuracy is unknown, it may be possible to estimate the accuracy of

the sensor footprint metadata using historical data or data from other sources. If this is

the case, a new event will be published with the corrected footprint metadata and/or

accuracy information.

For the reference implementation of the PSSA system, we defined the event message to be a multi-

part mime that includes a header and one or more mime data segments to transmit the sensor data.

The header is comprised of a context section that contains the common data described above and a

content section that contains metadata associated with the subsequent mime data segments. This

works very well within the context of our messaging system.

25

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

4.0 RESULTS AND DISCUSSION

This section describes the physical architecture developed for Phase I of the Persistent Surveillance

Data Processing, Storage and Retrieval project and the reference implementation (prototype) we

built to test many of the concepts present in the architecture. The previous section provided an

overview of the functional capabilities we envisioned for the PSSA. In contrast, this section

provides a detailed description of how we have implemented or plan to implement many of those

capabilities. In addition we present discussion around various usage scenarios in which the PSSA

might be applied and how a PSSA-based system might interoperate or integrate with other sensor-

based systems and processing architectures.

Additional detailed descriptions of specific areas of our work and research are also provided in the

following appendices:

 Appendix A – PSSA Dashboard Reference Implementation

 Appendix B – Tutorial for Building PSSA Components (SDK Reference

Implementation)

 Appendix C – Java Bindings for PSS SDK

 Appendix D – Synchronization Issues

4.1 Reference Implementation – SDK, Components and Demonstration

4.1.1. Overview

As mentioned in the earlier sections, the PSSA consists of 4 customizable software layers:

Ingestion, Application Services, External Gateways, and Dissemination. In addition, the PSSA

includes a standardized Core Services layer which is responsible for providing the infrastructure

required to support the integration of the components in the customizable software layers. From a

software developer‘s perspective, to build a customized PSSA component in former layers, one

needs to have access to a specialized SDK that can encapsulate the low-level communication and

data-specific implementation details into a well-structured PSSA-specific API call.

In this vein, this section starts by providing the description of the developed PSSA SDK, followed

by which the details to employ the SDK-specific functions/procedures to build few customizable

PSSA components/service will be provided. Further, a description of already built reference PSSA

components will be presented with inkling to a reproducible demonstration of PSSA capabilities.

Finally, a procedure is provided to build a working demonstration of the reference PSSA

implementation, which would include in it the appropriate recommendations to configure and

employ the developed PSSA components and services.

4.1.2. PSSA SDK

As part of the effort to design and develop the PSSA reference implementation to ingest, exploit,

store and visualize disparate real-time sensor data, an SDK has been developed in C++ language,

using a light-weight messaging middleware library called ZeroMQ. This developed PSS SDK aptly

provides the required API interfaces for any consumer of the PSSA architecture, to build low-level

PSSA modules like Publisher, Subscriber and Service Provider. These low-level PSSA modules

can be grouped (according to the custom business logic) to build high level customized components

like Sensor Data Ingestor, Exploitation Service, Data Storage Service and any helper services like

26

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

eXtensible Messaging & Presence Protocol (XMPP) message bridge as shown in Figure 4. Further,

the PSSA SDK has been design to effectively abstract the architecture and communication (along

with few media processing routines) complexity from the consumer and aid him/her in building the

high-level business logic components that can effectively leverage the PSSA framework.

The PSSA SDK was originally developed in C++, with pertinent classes and structures, later

wrapped with C ―DLL‖ procedures to make it cross-language compatible. Further, the JAVA and

C# bindings/wrappers are also available for the present version of the PSSA SDK. The PSSA SDK

has proven to be beneficial to develop PSSA components in Java, MATLAB and C# languages for

various capability demonstrations (discussed in this report). This sub-section will provide the

functional description of the APIs that are available as part of the C-DLL interfaces which

reasonably extrapolates into the other language bindings.

Figure 4: PSSA SDK Interface

Figure 4 is a pictorial representation of employing PSSA SDK API interfaces to build customized

(Business Logic) components. The developed PSSA SDK provides the required API interfaces for

any consumer of the PSSA Cloud architecture, to build low-level PSSA components like Publisher,

Subscriber and Service Provider. These low-level components can be grouped (for building

Exploitation algorithms that would require Subscriber and Publisher components in them)

appropriately to build customized components like Video Ingestor, Media Storage Service and other

Exploitation Algorithm Services. It can be seen in Figure 4 that each of the low-level SDK modules

have their own independent contexts created in the SDK layer to effectively manage resource

allocation and release as explained in the details in the text of this section.

4.1.3. Setup and Teardown API Calls

The ―Directory Service,‖ as shown in Figure 4 is one of the main and required core service that

would define a unique PSSA cloud instance, i.e. every PSSA cloud can have only one directory

 PSSA SDK

 API Interface

PSSA Cloud

Directory Service

PSSA SDK

API Interface

Consumer

(Publisher, Subscriber,

Service…)

Consumer

(Publisher, Subscriber,

Service…)

Low-level SDK modules

(Publisher, Service

Provider and the

Subscriber)

Individual PSSA SDK

context created for each

low-level modules

27

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

service at a pre-designated address. Directory Service developed for the present version of the

PSSA reference implementation is responsible for keeping track of all the publishers and service

providers present in its PSSA cloud instance and provide the new or existing subscribers with this

tracked information at runtime.

The PSSA SDK provides below API calls to initialize and release the resources like memory,

threads and network ports, which are encapsulated in form of creating independent contexts for

each low-level SDK modules. These established contexts would provide the low-level modules

with information and interface required by the underlying message passing and event registration

mechanism:

PSS_RESULT_CODE PSS_Initialize(const char* directory_endpoint,

 const int starting_port_number,

 const int ending_port_number)

The PSS_Initialize takes as its first input parameter as a string, which specifies the directory

service‗s protocol address, like “tcp://XXX.XX.XX.XX:Port”, in the endpoint address format

adopted from the 0MQ standards. The next two input parameters specify the available contiguous

port range (start and end) that is available on a given machine for the PSSA component to use at the

runtime . Only successful initialization the PSS_RESULT_CODE value ―0‖ is returned. This call

internally does default (for example one context per application) allocations of the resources

primarily the number thread resources for underlying 0MQ library routines. But, if the developer

chooses to specify the number of the application threads and the I/O threads, with some pre-

conceived knowledge about the PSSA component in terms of their context, than the below call can

support it:

PSS_RESULT_CODE PSS_InitializeEx(const char* directory_endpoint,

 const int starting_port_number,

 const int ending_port_number,

 const int number_application_threads,

 const int number_io_threads)

Where the number_application_threads specifies the number of application threads that will utilize

SDK communication services and number_io_threads specifies the number of number of I/O

threads SDK will use internally to manage communication.

The next step in the initialization process is to acquire a context, mentioned earlier, to the SDK‘s

communication threads using the below call:

PSS_RESULT_CODE PSS_InitializeContext(const char* directory_endpoint,

 const int starting_port_number,

 const int ending_port_number,

 PSS_CONTEXT_HANDLE* contextex)

Where the PSS_CONTEXT_HANDLE type pointer (contextex above) provides the encapsulated

access to the context (created and) returned by the underlying initialization routine from the SDK.

28

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

The individual context creation is obligatory and will be used to create the low- level publisher,

subscriber and the service provider modules in a PSSA component in the context. Accordingly the

context release call is also provided to for these low-level modules, which takes as it input a context

pointer to be released as shown below:

PSS_RESULT_CODE PSS_ReleaseContext(const PSS_CONTEXT_HANDLE contextex)

Further, the overall cleanup for the SDK can be invoked with below call which can release the all

the allocated resources employed during the lifetime of the PSSA component, as shown below:

SDK_API

PSS_RESULT_CODE PSS_Cleanup()

4.1.4. PSSA Message Format and Utility API Calls

The PSSA currently uses an event message structure that can hold multiple data parts in it, which

can be visualized as a multipart mime structure shown next in Figure 5.

Figure 5: PSSA Event Message Structure

PSSA Event Message

Message Part - 1

ID - ‘Context’

Type – ‘XML’

……….data……..

Message Part - 2
ID - ‘Content’

Type – ‘MPEG-4 Frame’

……….data……..

Message Part - N
ID - ‘UserDefined’

Type – ‘XML’

……….data……..

29

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 5 is a pictorial representation of PSSA event message structure. It can be noticed that

multiple and independent message parts can be embedded into the event message with appropriate

attributes like ID, Type and Index. The primary rationale behind designing the current event

structure is to support the mixed sensors platforms, with multiple and varied data generating sensor

sources.

Each of these data parts can be individually attached and manipulated with the SDK‘s message

routines. Further, each data part can have independent attributes like content type, ID and index in

a given event message. The primary rationale behind designing the current event structure is to

support the mixed sensors platforms, with multiple and varied data generating sources on it, like for

example a Global Positioning System (GPS) and Inertial Measurement Unit (IMU)-enabled mobile

camera would generate a single PSSA event message, with three data parts in it holding the GPS

data, IMU data and the video frame data in it.

Further, it is conceived that every event message would at least have two message parts in it, one

for the context of the event and another one holding at least one content of the event. The context

of the event message would hold in it the metadata like timestamp, location and generation source

for the data parts in the content area of the event.

A sample message would be described later in the section. Below are the message related SDK API

calls that would aid in the creation, manipulation, retrieval and destruction the PSSA event

message.

PSS_RESULT_CODE PSS_CreateMessage(PSS_MESSAGE_HANDLE* message)

PSS_RESULT_CODE PSS_ReleaseMessage(const PSS_MESSAGE_HANDLE message)

Where the PSS_MESSAGE_HANDLE type pointer (message above) provides the encapsulated

access to the PSSA event message (created and) returned by the underlying message creation

routine from the SDK. The PSSA event message can be released by the above

PSS_ReleaseMessage call. Further, the message parts can be added to the created message handle

using the below call:

PSS_RESULT_CODE PSS_AddMessagePart(const PSS_MESSAGE_HANDLE message,

 const char* content_id,

 const char* content_type,

 const void* content,

 const unsigned long length,

 const bool firstPart)

Where the message is the created message handle, content_id is the user specified identification for

the part, content_type specifies the well-defined format (at least defined in the PSSA system) of the

data of the message part and the content is the pointer to the byte array of the raw data to be

embedded in to the message part. The length is the length of the content data in bytes and the

firstpart flag specifies if the part being added is a first part of the event message. The content_id,

content_type and firstpart are encapsulated into a PSS_MESSAGE_PART_INFO structure as

shown below to the developer thru the PSSA SDK:

30

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

typedef struct

{

 const char* content_id;

 const char* content_type;

 bool firstPart;

} PSS_MESSAGE_PART_INFO

Additionally, SDK provides below API calls to retrieve the information from the existing PSSA

event message:

PSS_RESULT_CODE PSS_GetMessagePartCount (const PSS_MESSAGE_HANDLE message,

 int* part_count)

The above call returns the number of parts in part_count, which are present in a given PSSA event

specified by the message handle in the context. It is also possible to retrieve information of all the

parts present in the given message along with the part‘s count, as shown below:

PSS_RESULT_CODE PSS_GetMessagePartInfo(const PSS_MESSAGE_HANDLE message,

 PSS_MESSAGE_PART_INFO** parts,

 unsigned short* part_count)

Further, individual part content from the event message can be retrieved by using below two calls,

first by a known index in the event and the second by a known content_id :

PSS_RESULT_CODE PSS_GetMessagePartByIndex (const PSS_MESSAGE_HANDLE message,

 const unsigned short index,

 void** content,

 unsigned long* content_length)

PSS_RESULT_CODE PSS_GetMessagePartByContentId

 (const PSS_MESSAGE_HANDLE message,

 const char* content_id,

 void** content,

 unsigned long* content_length)

Upon successful call completion, the content points to the raw data array and the content_length

specifies the length of the retrieved raw data array in bytes. The current SDK version provides a

procedure to specify filters that can be applied on any given message part. There exists a reference

implementation for two flavors of the MPEG-4 decode filters — built using Fast-Forward MPEG

(FFMPEG) library routines — which have been encapsulated in to a

PSS_MESSAGE_FILTER_TYPE enum as shown below:

typedef enum

{

31

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 PSS_MPEG4_DECODE = 0,

 PSS_MPEG4_DECODE_FLIPPED = 1

} PSS_MESSAGE_FILTER_TYPE

The message filter instance encapsulated in PSS_MESSAGE_FILTER handle can be created and

released by below API calls:

PSS_RESULT_CODE PSS_CreateMessageFilter

 (PSS_MESSAGE_FILTER_TYPE messagefilterType,

 PSS_MESSAGE_FILTER* messageFilter)

PSS_RESULT_CODE PSS_ReleaseMessageFilter

 (const PSS_MESSAGE_FILTER messageFilter)

Further, individual part content from the event message can be retrieved, with a specified filter

applied to it, by using below two calls (the terms in the below call hold the same meaning

mentioned above in the original API calls):

PSS_RESULT_CODE PSS_GetFilteredMessagePartByIndex

 (const PSS_MESSAGE_HANDLE message,

 const unsigned short index,

 const PSS_MESSAGE_FILTER messagefilter,

 void** content,

 unsigned long* content_length)

PSS_RESULT_CODE PSS_GetFilteredMessagePartByContentId

 (const PSS_MESSAGE_HANDLE message,

 const char* content_id,

 const PSS_MESSAGE_FILTER messagefilter,

 void** content,

 unsigned long* content_length)

PSSA Publisher & Service Provider API Calls: As mentioned earlier, the current version of the

PSSA SDK provides necessary APIs to build the low-level publishers and the service providers in a

PSSA component. This sub-section provides those concerned API details, with insights into the

underlying publisher/service provider registration process with the directory service to provide the

―plug and play‖ view of the PSSA. Further, the details of the directory service entry structure will

be described in this sub-section, which is pertinent to understanding the subscriber APIs calls to be

described in the later section.

The current version of the PSSA SDK encapsulates the publisher instance creation and its

registration with the directory service in one API call shown below:

PSS_RESULT_CODE PSS_RegisterEventPublisher(const char* publisher_name,

 const char* publisher_address,

 const char** topics_published,

 const unsigned short topic_count,

 PSS_PUBLISHER_HANDLE* publisher,

 const char* publisher_latitude,

32

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 const char* publisher_longitude,

 const char* publisher_altitude,

 int publisher_motility)

The above call on successful completion would return a PSS_PUBLISHER_HANDLE type

pointer (publisher above), which provides an encapsulated access to the PSSA publisher instance

(created and) returned by the underlying publisher utility routines from the SDK. As seen in the

API call, every publisher instance is characterized by below attributes:

 Publisher name – a user provided name for the publisher instance (publisher_name

parameter in the call).

 Publisher address – a network IP address assigned to the machine running the publisher

instance, which is later combined with an appropriate port number (chosen dynamically

from the provided available port range by the context) to form a protocol IP (mentioned

earlier in the section). (publisher_address parameter in the call).

 Topics published – the list of the event topics, which would be published by the

publisher (topics_published array parameter in the call).

 Topics count – the number of the event topics, which would be published by the

publisher (topic_count parameter in the call).

 Initial source location information – the initial/starting latitude and longitude

information of the original source (sensor or the sensor platform) of the data, which is

being encapsulated into the PSSA events by the publisher in the context

(publisher_latitude, publisher_longitude and publisher_altitude parameters in the call).

 Source motility information – the information of the original source (sensor or the

sensor platform) of the data, which is being encapsulated into the PSSA events by the

publisher in the context (publisher_motility parameters in the call).

The above information attached with each publisher instance is communicated to the directory

service in the PSSA cloud, thru the registration process, as shown in Figure 6.

33

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 6: PSSA Registration Process

Figure 6 is a pictorial representation of the publisher and service provider component registration

process in the PSSA system. The publisher‘s or a service provider‘s registration process in the

PSSA cloud with the directory service, is one of the key implementation concepts to support the

―Plug and Play‖ view of the PSSA. As seen in the figure, each publisher or service provider

instance communicates their individual information to the directory service which in return provides

them to the interested subscribers in PSSA cloud, as they become available in the deployed solution

at runtime.

A directory service entry structure is provided to encapsulate the above publisher information as

shown below:

typedef struct

{

PSS_DIRECTORY_CHANGE_ACTION action;

PSS_DIRECTORY_ENTRY_TYPE entry_type;

PSS_DIRECTORY_MOTILITY motility_type;

PSS_DIRECTORY_GEOLOCATION entry_location;

const char* name;

const char* endpoint;

const union

{

const char* topic;

const char* service_contract;

};

} PSS_DIRECTORY_ENTRY

Further, the directory service keeps track of every publisher instance and the service provider in the

cloud, thru a collection of these directory entries, as shown in Figure 6. The most important aspect

of the above directory service entry structure, which is not provided directly from the publisher

 PSSA SDK

 API InterfacePublisher PSSA SDK

API Interface Service Provider

Directory Service

Directory Entry
(Publisher

Information)

Directory Entry

List

Directory Entry

(Service Provider

Information)

34

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

attributes, is its status, i.e. if the publisher has been started or stopped, and this information is

captured in PSS_DIRECTORY_CHANGE_ACTION entry as ―ADDED‖ or ―REMOVED‖

respectively. This entry will invoke necessary subscription and unsubscription logic in the PSSA

subscriber components, to be discussed later in the next sub-section.

With respect to the service provider, a similar API calls is provided for creating and registering a

service provider module, as shown below:

PSS_RESULT_CODE PSS_RegisterServiceProvider(const char* provider_name,

 const char* provider_address,

 const char* service_contract,

 PSS_SERVICE_HANDLE* service)

Conceptually, the basic functional difference between the publisher and the service provider comes

from the fact that the publisher, publishes the events at a defined rate (or appropriately as required

by the customized logic governing it) and the service provider just responds appropriately, to the

request from the other components in the PSSA cloud. The request and response message formats

for the service provider is same the event message template discussed previously in this section.

Further, the publisher handle is used to publish the formatted event messages into the cloud using

the below API call:

PSS_RESULT_CODE PSS_PublishEvent(PSS_PUBLISHER_HANDLE publisher,

 const char* topic_name,

 PSS_MESSAGE_HANDLE message)

Whereas, the service handle is used to wait on the request (using appropriate timeout period) and

respond accordingly using the below API calls:

PSS_RESULT_CODE PSS_ReceiveRequest(const PSS_SERVICE_HANDLE service,

 long milliseconds_timeout,

 PSS_MESSAGE_HANDLE message)

PSS_RESULT_CODE PSS_SendResponse(const PSS_SERVICE_HANDLE service,

 PSS_MESSAGE_HANDLE message)

Finally, the SDK provides required API calls to unregister publisher and service provider module,

by removing the appropriate entry from the directory service and also releasing the allocated

resource for the related underlying SDK context, as shown below:

PSS_RESULT_CODE PSS_UnregisterEventPublisher

 (const PSS_PUBLISHER_HANDLE publisher)

PSS_RESULT_CODE PSS_UnregisterServiceProvider

 (const PSS_SERVICE_HANDLE service)

35

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 7: PSSA Directory Service Notification Event

As depicted in Figure 7, every PSSA subscriber component requires at least one directory service

observer instance in it, to retrieve asynchronous updates from the directory service in the cloud.

Further, based on the envisioned processing or business logic might require one or more event

subscriber or service consumer instances to fully establish and complete the ―Plug and Play‖

capability and view of the PSSA architecture. The PSSA SDK provides required API calls to build

these above mentioned subscriber and directory observer low-level SDK modules.

PSSA Subscriber & Directory Service Listener API Calls: The ―Plug and Play‖ capability of the

PSSA architecture can be complete and possible only with appropriate subscriber components that

can be positioned / built to receive the updates, in form of the directory service entries, from the

directory service. Followed by which, will eventually subscribe to the publisher or service

provider instances (present in the PSSA component of interest) and receive event messages in a

pub-sub mode (for the publisher consumers) or in a request-response mode (for the service provider

consumers) of communication. As a consequence of which, a PSSA subscriber component should

have at least one low-level SDK module called directory service observer and could have more than

one subscriber or service consumer modules in it, as shown in Figure 7.

The PSSA SDK provides below APIs to build and destroy a directory service observer module,

which is responsible for acquiring the directory service entries dynamically (asynchronously) as

they are added or removed as a consequence of starting new publishers or closing the existing

publishers in the PSSA cloud:

PSS_RESULT_CODE PSS_AttachDirectoryServicesObserver

 (const PSS_DIRECTORY_ENTRY_CALLBACK callback,

 const unsigned long hint,

 PSS_DIRECTORY_OBSERVER_HANDLE* observer)

Cloud

 PSSA SDK

 API InterfacePublisher

PSSA SDK

API Interface

Directory Service

Observer

Directory Service

Directory Entry
(Publisher

Information)

Directory

Entry List

Event

Subscriber

Directory

Entry List

Asynchronous Updates

Asynchronous Events

PSSA Cloud

36

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

PSS_RESULT_CODE PSS_DetachDirectoryServicesObserver

 (const PSS_DIRECTORY_OBSERVER_HANDLE observer)

As seen in the above creation API, to support the required asynchronous mode of the directory

service update acquisition, a call-back method with the hint option is provided. This call back

function of format shown below…

typedef void (*PSS_DIRECTORY_ENTRY_CALLBACK)(PSS_DIRECTORY_ENTRY*

changes, const unsigned short change_count, const unsigned long hint)

…provided by the user will receive updates (as list of directory entries mentioned in the previous

sub-section) accordingly by regularly invoking the below API call:

PSS_RESULT_CODE PSS_CheckForDirectoryServicesUpdates

 (const PSS_DIRECTORY_OBSERVER_HANDLE observer,

 long millisecondsTimeout)

On reception of the publisher topic/entry (mainly the publisher‘s endpoint address and the topic),

which is of interest for the PSSA component‘s business logic, the subscriber instance can be created

to receive events using the below API call for creation:

PSS_RESULT_CODE PSS_Subscribe(const char* publisher_endpoint,

 const char* topic_name,

 PSS_SUBSCRIBER_HANDLE* subscriber)

Upon successful creation of the subscriber instances, below API call can invoked at user-defined

rate with appropriate time out to receive the published event s from the publisher in pub-sub

communication mode (asynchronously) :

PSS_RESULT_CODE PSS_ReceiveEvent(const PSS_SUBSCRIBER_HANDLE subscriber,

 long milliseconds_timeout,

 PSS_MESSAGE_HANDLE message)

The subscriber instance and its related resources can be released at the time of unscrewing, if at all

the publisher was stopped in the PSSA cloud (indicated thru the ―REMOVED‖ entry updates from

the directory service) or its determined by a business logic to stop receiving events by using the

below API call:

PSS_RESULT_CODE PSS_Unsubscribe(const PSS_SUBSCRIBER_HANDLE subscriber)

Similar APIs are available to create service consumer instances, i.e. create connection, send request

and receive response as shown below for a request-response communication mode:

PSS_RESULT_CODE PSS_CreateConnection(const char* service_address,

 PSS_CONNECTION_HANDLE* connection)

37

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

PSS_RESULT_CODE PSS_CloseConnection(const PSS_CONNECTION_HANDLE connection)

PSS_RESULT_CODE PSS_SendRequest(PSS_CONNECTION_HANDLE connection,

 const PSS_MESSAGE_HANDLE message)

PSS_RESULT_CODE PSS_ReceiveResponse(const PSS_CONNECTION_HANDLE connection,

 PSS_MESSAGE_HANDLE message)

As it is observed, these above service consumer/ subscriber API calls are complementary to the

service provider /publisher API calls mentioned in the previous sub-section. Finally, apart from the

mentioned default API calls the PSS SDK also provides the advance publisher, subscriber and

directory observer creation calls, thru which user can create and specify a more than one

independent context (which is used as a default setting in the SDK) to effectively use the

computational resources available to him on a given machine by using below API calls:

PSS_RESULT_CODE PSS_SubscribeEx(const char* publisher_endpoint,

 const char* topic_name,

 const PSS_CONTEXT_HANDLE contextex,

 PSS_SUBSCRIBER_HANDLE* subscriber)

PSS_RESULT_CODE PSS_AttachDirectoryServicesObserverEx

 (const PSS_DIRECTORY_ENTRY_CALLBACK callback,

 const unsigned long hint,

 const PSS_CONTEXT_HANDLE contextex,

 PSS_DIRECTORY_OBSERVER_HANDLE* observer)

PSS_RESULT_CODE PSS_RegisterEventPublisherEx

(const char* publisher_name,

 const char* publisher_address,

 const char** topics_published,

 const unsigned short topic_count,

 const PSS_CONTEXT_HANDLE contextex,

 PSS_PUBLISHER_HANDLE* publisher,

 const char* publisher_latitude,

 const char* publisher_longitude,

 const char* publisher_altitude,

 int publisher_motility)

A tutorial to develop publisher, subscriber and service provider using the C++ based SDK library is

provided in Appendix B. Nonetheless, the concepts and APIs presented in this section still are

applicable to understand and implement the contents of the tutorial effectively.

4.1.5. Implemented Sample PSSA Components

Using the above mentioned PSSA SDK library APIs and following the guidelines presented in the

tutorial provided in Appendix B, sample PSSA components have been developed, to validate the

―Plug and Play‖ nature of the PSSA. Below is the list of the sample PSSA components developed

as part of this effort of PSSA validation:

 Image Video Ingestion Service

 RTSP Video Ingestion Service

38

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 HTTP Video Ingestion Service

 Geographically Encoded Objects Really Simple Syndication (GeoRSS) Ingestion

Service

 Video Quality Exploitation Service

 Video Tracking Service

 Media Storage & Retrieval Service

 RTSP Video Dissemination Service

 Data Storage Service

 Enhanced Directory Service

 XMPP-PSSA Bridging Service

 Dashboard Client

 OpenLST Client

 Remote Service Launcher Service

 Directory Service Observer

Image Video Ingestion Service: In brief, this ingestion service is developed with an aim to ingest

time stamped real-time image frames from image capturing sensor platforms, like IP-based internet

cameras or on-board EO/IR sensors of an Unmanned Aerial Vehicle (UAV), into the PSSA cloud as

the video frame events. As the image capturing sensor platforms vary in their image format and

communication protocol, any exploitation service or application, interested in its imagery, has to

develop customized communication module and image conversion module before actually doing the

real exploitation processing on the imagery data.

This customized exploitation service creation would not scale well in, effort and resources, as

different sensor platforms are introduced in the system. Thus, it would be a necessity to provide a

normalized view of these different sensors as the virtual sensors, which generate a common image

format and use a common communication protocol.

This normalized communication protocol can be easily achieved by employing PSSA event

publisher-based communication and further as part of this effort, the normalized image format is

chosen to be MPEG-4 encoded image stream. A pictorial representation of this described internal

process is shown next in Figure 8.

During the investigative study of the existing video format standards, the MPEG-4 encoding has

proved to be efficient for network streaming the vide frame data and as well as effective on

consuming lower disk space by utilizing an MP-4 file format, that can store MPEG-4 compressed

frames with highly accurate temporal artifacts, as compared to other existing video format

manipulation standards available under Lesser General Public License (GNU), aka LGPL, license.

39

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 8: Video Image Ingestion

The Video Image Ingestion Service normalizes the incoming video frames in various formats into

the MPEG-4 encoded PSSA video events. It also deals with the various external communication

interfaces to acquire the captured data from the sensors. Thus, the Video Image Ingestion Service

has been developed to communicate with sensors that support image retrieval via different protocols

(currently only simple HTTP, multipart HTTP and a simulated custom push protocol are

considered). Further, the different formats of imagery — which are currently Motion JPEG

(MJPEG), Joint Photographic Experts Group (JPEG), and Bitmap (BMP) — are considered

retrieved from these sensors are encoded to the MPEG-4 stream in real-time with one-pass encoding

techniques, with possible key frames (complete) and partial frames. Finally, these encoded MPEG-

4 video frames, along with their sensor and timestamp information, are converted PSSA event

messages with two parts, namely context and content parts as shown below:

Content-Type: text/xml

Content-Location: event

<Event topic="sensor.observation.media.video:acquired?sensorid=1234">

<Context>

<Producer>VideoIngestor@192.168.1.104</Producer>

<ReferenceSensorId>1234</ReferenceSensorId>

<Timestamp>2010-02-08T14:21:13.3320001</Timestamp>

<Location>

<Position>POINT(30 30)</Position>

</Location>

</Context>

<Content>

<VideoFrame type="partialFrame|keyFrame" bitsPerSecond="20000" width="320"

height="240" samplePeriod="P0.033S" presentationTime="2010-02-

08T14:21:13.332001" href="cid:frame1" />

</Content>

PSSA Cloud

 IP Camera

(MJPEG over

Multipart HTTP)

(PUSH)

Simulated EO/IR

Sensor on UAV

(JPEG/BMP over

Customized Push

protocol)

(PUSH)

 Traffic Camera on

the Internet

(JPEG over HTTP)

(PULL)

External

Communication

module

MPEG-4

One-pass

Encoder

Module

Publisher

Module

Video Image

Ingestion Service
A Normalized

View of the

Sensor Data

as PSSA

Events

40

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

</Event>

Content-Type: x-application/mpeg4-frame

Content-Location: frame1

...frame bits...

As seen above PSSA event message, the first part of the video frame event message is considered to

provide context and concerned content information of the publishing event in terms of below

attributes:

 Topic of the publishing event - This specifies the unique category of the event

publishers, I.E. more than one publisher can publish the same event topic type. But, can

be made unique by adding a sensorID tag at the end of it.

 Producer details - This identifies the PSSA component type and related machine in the

PSSA cloud generating it.

 Reference SensorID - The unique identification assigned to the sensor, to differentiate

and manage the related PSSA events generated from the given sensor in the context.

 Timestamp - The time stamp in GMT format, that specifies the image acquired time

from ingestion service‘s perspective.

 Location - The geographic location of the sensor, when the present imagery data has

been acquired.

 Content - This holds the information specific to the image frame captured by the

sensor, like if the frame is key or partial (after MPEG-4 encoding normalization), the

image quality in terms of bits per seconds, width, height, sample period of the sensor (to

capture the frame, which specifies the image frame rate) and the presentation time

(which specifies the frame presentation time after the encoder pass). Further, it holds

the reference to the part of the event message that contains the raw bits of the frame.

Further, the second part of the event message holds the raw bits of the MPEG-4 encoded frame, that

are referenced in the content information in the first part of the message. Thus, this ingestion

service on startup, initiates the communication with sensor of interest and before publishing this

above designed event message for every acquired image from the sensor, it creates a publisher

instance that registers with the directory service in the PSSA cloud, that provides the general details

specified in the SDK section.

The developed Image Video Ingestion Service has been tested and verified to work with below

sensors, with a maximum frame rate of 30 fps and with video quality of 256 Kbytes per second:

 CISCO PVC 300 IP camera with MJPEG imagery over multipart HTTP protocol.

 AXIS P1311 IP camera with MJPEG imagery over multipart HTTP protocol.

 Generic internet-friendly installed cameras with JPEG imagery over HTTP protocol.

 Simulated UAV sensor feeds with Electro-Optical (EO) and infrared (IR) imagery over

customized push protocol.

 Real-time user controlled video distortion feed (MATLAB integrated) simulator over

customized push protocol.

41

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Apart from the PSSA SDK routines FFMPEG, Wininet, Curl and other utility libraries are

employed to develop the Video image ingestion service.

RTSP Video Image Ingestion Service: The Video Image Ingestion Service, discussed earlier,

provided a generic way to develop a video event ingestion service, which has to deal with varied

communication protocols and image formats pertaining to a given sensor in the context, by

invoking appropriate normalization process in real-time. But, the RTSP Video Image Ingestion

Service is a specialized ingestion service that targets only the IP-based cameras which stream out

MPEG-4 encoded video over the RTSP protocol. Thus, this RTSP video ingestion service skips the

one-pass encoding step mentioned in Image video ingestion service (see Figure 8, above). Further,

it employs the same PSSA video frame event message format and registration mechanism described

in the previous sub- section, in the context of the Video Image Ingestion Service.

The developed RTSP Video Ingestion Service has been tested and verified to work with below

sensors, with maximum frame rate of 30 fps and the video quality of 256 Kbytes per second:

 CISCO PVC 300 IP camera.

 AXIS P1311 IP camera.

Apart from the PSSA SDK routines, Live555 media library and other utility libraries are employed

to develop the RTSP Video ingestion service.

HTTP Video Image Ingestion Service: When Summer at the Edge (SATE) started, there was a

need to ingest video from different sensors like smartphones, tablet devices, robots etc. The HTTP

Video Ingestor Service was developed to provide the capability to ingest real-time video using the

HTTP protocol. This allows any sensor device that can connect over TCP/IP to the HTTP Video

Ingestor Service to publish streaming video on the PSSA cloud. This service has two components;

one provides a HTTP service and the other provides frame publishing service. The HTTP server

opens a user-specified port and listens for HTTP requests from various sensors. The HTTP service

is designed to handle multiple different types of incoming video streams. However, in order to

support the SATE 2011 iStream project, we have only implemented an H.264 handler that is used to

process H.264 frames sent from an iPhone application using the HTTP protocol. The H.264 frames

received by the HTTP service are transcoded as bitmap images to create video event messages that

are then published into PSSA cloud. This service employs the same PSSA video frame event

message format and registration mechanism used by the Video Image Video Ingestion Service

described earlier in section 0. The HTTP Video Imaging Ingestion Service has been initially tested

with iStream project. iStream is an iPhone application which captures raw video frames on the

iPhone, decodes them as H.264 frames and transmits them over HTTP to a server.

GeoRSS Ingestion Service: In brief, as shown later in this document in Figure 12, this GeoRSS

Ingestion Service, as suggestive of its name, is built to ingest the time-stamped GeoRSS feeds from

the real-time or archived news/government/user blog websites available in the internet, into the

PSSA cloud as the GeoRSS text events. Conceptually, these websites are visualized as text

streaming sensors and there exists three different GeoRSS feed formats that any given GeoRSS

source can employ as mentioned below:

 World Wide Web Consortium (W3C) version.

 Simple GeoRSS

42

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 GML/Pro GeoRSS

As with any ingestion service, the PSSA SDK publisher instance creation and registration is

required for this service also. Further, like the previous Video Image Ingestion Service, this

ingestion service has to provide a normalized view of the GeoRSS sources with varied GeoRSS

feed formats. As a consequence of the data being simple text/XML format, the logic is designed to

use a customized PSSA event message format as its normalized GeoRSS data format for all the

varied GeoRSS sources. Thus, all the different GeoRSS feeds are converted in real-time into the

below GeoRSS text stream event:

Content-Type: text/xml

Content-Location: event

<Event topic="sensor.observation.text.georss:acquired?sensorid=GeoRSS03">

 <Context>

 <Producer>GeoRSSIngestor@192.168.1.104</Producer>

 <ReferenceSensorId>GeoRSS03</ReferenceSensorId>

 <Timestamp>2010-04-21T15:30:29.623000</Timestamp>

 <Source>

 <Description>USGS</Description>

 <InetAddress>www.4qbase.com</InetAddress>

 </Source>

 </Context>

 <Content>

 <FeedItem

 title="Major event happened here"

 description="Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean

auctor, metus in iaculis fermentum, massa ligula imperdiet libero, eget accumsan nunc nisl

vitae est. " pubdate="2010-04-15T13:40:59"

 geolocation="POINT(-83.0196 40.00173)" />

 </Content>

</Event>

As seen above PSSA event message, there exists only one message part in the event message and it

is considered to provide context and concerned complete content information of the publishing

GeoRSS event in terms of below attributes :

 Topic of the publishing event - This specifies the unique category of the event

publishers, i.e. more than one publisher can publish the same event topic type. But, can

be made unique by adding a sensorID.

 Producer details - This identifies the PSSA component type and related machine in the

PSSA cloud generating it.

 Reference SensorId - The unique identification assigned to the sensor, to differentiate

and manage the related PSSA events generated from the given sensor in the context.

 Timestamp - The time stamp in GMT format specifies the GeoRSS feed acquired time

from ingestion service‘s perspective.

 Location - The geographic location of the senor i.e. GeoRSS source, when the feed is

acquired, which is different from the actual feed location.

 Content - This holds information specific to the GeoRSS feed acquired by the sensor,

like the title of the feed, the complete description, the publication date and time and

finally the geolocation of the GeoRSS feed.

43

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Apart from the PSSA SDK routines‘ eXtensible Stylesheet Language Transformations (XSLT)

transformation library, Curl and other utility libraries are employed to develop the GeoRSS

ingestion service.

Video Quality Exploitation Service: Functionally, an exploitation service can be seen as the PSSA

component that employs in its application at least three low-level PSSA SDK modules, namely the

directory service observer module, subscriber module and the publisher module, and glues them

with the required business i.e. exploitation logic. The first two modules, directory observer and

subscriber are necessary to receive the events of interest that are active in the PSSA cloud to run the

exploitation algorithm on them. The last publisher module is required to publish back into the

cloud, the new events, whose content is based on the exploitation outcome on the subscribed event

messages. In this vein, the Video Quality Exploitation Service in the present context, subscribers to

the publishers in the cloud, that publishes video frame events (as mentioned and introduced in the

early sub- sections) and generates the various video quality metrics that will be published back as

video quality events in to the cloud.

Getting into the specifics of the Video Quality Exploitation Service, when the directory entry

updates are received in the directory service observer module, the ―topic‖ entry in the directory

service entry structure (mentioned in the SDK sub-section) is checked for a match for the video

frame events, i.e. for ―sensor.observation.media.video:acquired‖ and once confirmed, an

exploitation session is created that targets the given video event publisher in the context and

publishes the video quality events. Thus, as shown in Figure 12 (coming up), the created

exploitation session, is responsible to initiate low-level subscriber module that receives the video

frames from the publisher and then provide the decoded video frame image (i.e. using the MPEG-4

decode filter from the SDK) to the quality estimating algorithm that generates in real-time the

quality metrics like noise and Structural Similarity (SSIM) Index for all three bands in the video

frame image. These generated quality metrics are then converted into below PSSA video quality

event:

Content-Type: text/xml

Content-Location: event

<Event topic="edu.ualr.quality-metric.media.video:qualityestimated?sensorid=1234">

 <Context>

 <Producer>VideoQaulityPublisher@192.168.1.104</Producer>

 <ReferenceSensorId>1234</ReferenceSensorId>

 <Timestamp>2010-02-08T14:21:13.3320001</Timestamp>

 </Context>

 <Content>

<VideoFrameQualityMetric metric_name="NoiseRed" metric_value="0.998” unit="db" window="30"

frame= “233” />

<VideoFrameQualityMetric metric_name="NoiseBlue" metric_value="0.998” unit="db" window="30"

frame=“233” />

<VideoFrameQualityMetric metric_name="NoiseGreen" metric_value="0.998” unit="db" window="30"

frame=“233” />

<VideoFrameQualityMetric metric_name="SSIMRed" metric_value="99” unit="%" window="30"

frame=“233” />

<VideoFrameQualityMetric metric_name="SSIMRed" metric_value="99” unit="%" window="30"

frame=“233” />

<VideoFrameQualityMetric metric_name="SSIMRed" metric_value="99” unit="%" window="30"

frame=“233” />

 </Content>

</Event>

44

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

As seen in the video quality event message, which is a single message part event, the context

contains information like producer (publisher) details and the reference sensor ID that uniquely

distinguishes this publisher from other possible publishers with same event publishing topics.

Further, it contains the timestamp information, which is the time at which the exploitation session

completed computing the quality information for the specific video frame event (frame) in the

context.

The content part of the message contains the quality metrics like noise and SSIM calculated for the

video frame and the related information like the frame number in the subscribed incoming event,

metric name, units of measurement and finally the estimation window, which specifies the

estimation window size of the frames over which the exploitation session computes the quality (i.e.

how many frames are to be skipped or accounted before computing/estimating the quality of the

video frame) for a given sensor in the context. A publisher module is created and registered with

the directory service with the topic specified in the event for the sensor in the context thru this

dedicated exploitation session per video sensor in the cloud.

Finally, the Video Quality Exploitation Service is built to handle multiple live sensor feeds (from

multiple ingestion services for different sensors) simultaneously and compute/ publish quality

events in real-time, back into the PSSA cloud. Apart from the PSSA SDK routines OpenCV and

other utility libraries are employed to develop the Video Quality Exploitation Service.

Video Tracking Exploitation Service: In brief, the video tracking exploitation algorithm subscribes

to the video frame events, which are being generated from a video sensor registered with the PSSA

cloud, and computes the possible moving tracks of objects present in the field of view of the sensor.

Further, it also publishes the computed tracks on the video stream events back into the PSSA cloud

by creating independent track computing sessions per sensor. The Video Tracking Exploitation

Service employs the same logic described and developed in the context of the Quality Exploitation

Service to subscribe to the video frames and publish related video track events.

Finally, like the Video Quality Exploitation Service, it is built to handle multiple live sensor feeds

simultaneously and compute/ publish tracking events in real-time, back into the PSSA cloud, as

shown in Figure 12. Moreover, by virtue of the pub-sub communication model embedded in the

architecture, it should be observed that a single publishing event (from a given sensor) is available

for exploitation to two different exploitation services simultaneously, which has been tested and

verified accordingly. Apart from the PSSA SDK routines OpenCV and other utility libraries are

employed to develop the Video Tracking Service.

Media Storage & Retrieval Service (MSRS): In brief, the MSRS is one of the core services of the

PSSA, that is primarily, responsible to capture the video stream events (from multiple video frame

ingestion services) in the PSSA cloud and store them efficiently and accurately on a storage disk, in

manageable file segments.

Secondly, provide a service provider in the cloud, that would support retrieval of the stored video

file segments (stored in an organized fashion per sensor and with temporal information intact with

millisecond accuracy) and further provide ―conceptually‖ a continuous and accurate single logical

file view, with the retrieval query logic that effectively hides the disk-level file segments.

As mentioned in the previous section, the normalized MPEG-4 compressed video frames being

published into the PSSA cloud are available simultaneously to multiple subscribers like Video

45

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Quality Exploitation Service, Vehicle Tracking Services and any other video stream processing

services. Leveraging the above property of the architecture and using the developed (multiple

subscription) logic for the exploitation services, the storage functionality of the MSRS is

accomplished by storing the live sensor video frame events (the raw MPEG-4 frame data (from the

second message part of the event message) and its related attributes provided in the context part of

the event) in real-time, as a temporally indexed standard MP4 video stream format on a distributed

file system.

As shown next in Figure 9, the storage functionality of the MSRS has been designed appropriately

to handle multiple sensor feeds simultaneously by providing apt storage strategy for each individual

sensor (leveraging the multiple video frame event subscription logic explained earlier in the

exploitation service sections).

Figure 9: Multiple Simultaneous Video Sensor Feeds Supported by Media Storage Service

To make the stored video format file more manageable and accessible by a standard retrieval

interface, a file chunking strategy has been employed. The chunking strategy for a given sensor

PSSA Cloud

IP Cam

Video

IngestorExternal IP

Camera #1

Media Storage &

Retrieval

Service

Distributed File

System

IP Cam

Video

IngestorExternal IP

Camera #1

46

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

starts with a root folder, with the sensor identification number, followed by the Gregorian year, day

and the real chunk files of the video segments.

The naming convention of the individual video file segments is designed to reflect the time interval

of the chunk like ―StartTime- EndTime.MP4‖ and usually limited to few minutes of duration, for

quick file access during the retrieval mechanism to be explained later in the section. The ―Start

Time‖ and ―End Time‖ are represented in ISO 8601 standard convention and the sample file

organization strategy can be seen in Figure 10, following.

Figure 10: MSRS Chunking Strategy

The chunking strategy for a sensor starts with a root folder, with the sensor identification number,

followed by the Gregorian year, day and the real chunk files of the video segments. As shown

above, the naming convention of the chunk file used is ―Start Time-End Time.MP4‖ and further the

―Start Time‖ and ―End Time‖ use ISO 8601 time format convention.

The retrieval functionality of MSRS is designed to use low-level service provider and publisher

modules (from SDK) with a simple but millisecond accurate query logic to bind them. The retrieval

mechanism is accomplished using below steps:

1. At startup of the MSRS, the application creates a media streaming service provider

module, which registers and announces its availability in the PSSA cloud thru the directory

services and listens for any query on the advertised address.

47

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

2. The interested service consumer (media consumer) has to create the low-level service

consumers (from SDK) and sends a request to the media streaming to retrieve the media for

particular sensor ID and starting from the particular time in already introduced ISO 8601

standard.

3. Upon the request from the consumer, the service provider logic that is aware of the file

chunking strategy to store the file segments does a query against the chunking strategy with

the requested sensor ID and the start time. Based on the presence of the request file

segment or segments, it creates streaming session, with a unlisted and dedicated publisher

(this is a low-level publisher that doesn‘t register with the directory service, so it‘s not

visible to other PSSA components in the PSSA cloud) and provides this private publisher‘s

subscriber details with the unique streaming session identification value to the service

consumer, as part of the response to the request mentioned in Step 2, in the request-

response communication mode mentioned in the PSSA SDK section.

4. Upon the response the interested service consumer logic creates a low-level subscriber that

is now ready to receive the video stream for the requested sensor and with requested

starting time, as the video frame event messages (explained earlier in the Video ingestion

service section). The readiness of the subscriber is communicated to the media streaming

service provider in the request-response fashion, with the allocated session identification

value and the start time.

5. The Media Streaming Service, upon the request with the session identification value,

initiates the video frame event publishing logic that retrieves the frames from the

contiguous file segments (arranged based on the file chunking strategy) and streams

(publishes) them continuously to the private subscriber in the client, until the next step

happens, thus providing the continuous view of the archived sensor video stream. The

streaming/ publishing is continuous and also acknowledges seeks by the client thru the

request pattern mentioned in Step 4 (i.e. streaming session details with the different start

time).

6. When, the client decides to tear down the streaming session, he sends the request with the

allocated session identification value and the tear down command, upon which the

streaming session is de-allocated and the publisher is gracefully shut down.

Thus, the above logic is built into the MSRS to provide the client with a continuous and accurate

single logical file view of the archive video segments, which are stored over the sensor‘s registered

life time in the PSSA system. Further, the MSRS is built to support multiple simultaneous storage

sessions, to store the video events from different ingestion services simultaneously and also to

support multiple simultaneous streaming sessions, for the different and same sensors with the

archived video segments.

RTSP Video Dissemination Service (RVDS): It is evident from the last sub-sections that only the

PSSA-based media consumer components, are positioned to retrieve the video feeds from the video

streaming sensors that are registered with the PSSA cloud, via direct subscription to the ingestion

service or thru the Media Storage and Streaming Service.

To demonstrate the feasibility that any third party, off-the-shelf, media consumer/player (like a

VLC player) can be employed to access the live and archived video stream active in the PSSA

48

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

cloud, the RVDS has been built. Internally, the RVDS is a combination of a media consuming

PSSA component and standards-compliant RTSP streaming server. Thus, as shown in Figure 11,

based on the user (via VLC player) request sent thru the RTSP server interface for a particular

sensor in PSSA, the video event subscription for that requested sensor is established and on the

reception of the every video frame event, the server component streams the frames to the requested

user in the context.

Currently, the RVDS is built to handle multiple simultaneous media streaming sessions for different

or same sensor that are active in the PSSA cloud. Apart from the PSSA SDK routines Live555

media server library and other utility libraries are employed to develop the RTSP Video

Dissemination Service.

Figure 11: RTSP Video Dissemination Service

The RVDS is built to handle multiple simultaneous media streaming sessions for different or same

sensor that are active in the PSSA cloud. In brief, it utilizes a PSSA-enabled open source Live555

RTSP streaming server to accomplish its functionality.

Data Storage Service (DDS): In brief, as shown in Figure 12, the DSS is one of the core services

of the PSSA that is responsible to store the time stamped text-based PSSA events active in PSSA

cloud (like Video Quality, Video Tracking and GeoRSS events mentioned earlier) in a database

using a user- defined database schema (unique for every event type [topic]) in real-time.

The DSS is implemented with same basic glue logic, mentioned earlier for other event driven

services, to employ the directory observer and the subscriber modules to receive and check for

Live 555 RTSP

Server Module

(PSSA-Enabled)

Simultaneous

streaming

sessions

(to Third party

media clients)

Media Event

Subscriber

Module

PSSA Cloud

IP Cam

Video

IngestorExternal IP

Camera #1

IP Cam

Video

IngestorExternal IP

Camera #1

49

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

events of interest in the PSSA cloud. Further, the DSS is built to handle multiple event generation

services (exploitation and Ingestion) by creating simultaneous and exclusive storage sessions for

each of them. Current version of the implementation doesn‘t support retrieval mechanism, but

which can be easily be built employing the retrieval mechanism developed for the Media Storage

and Streaming Service. Apart from the PSSA SDK routines, Postgresql client library and other

utility libraries are employed to develop the DSS.

Figure 12: PSSA Data Storage Service

The DSS is built to handle multiple event generation services (exploitation and Ingestion) by

creating simultaneous and exclusive storage sessions for each of them. The inserts in the backend

database is done by using a user-defined database schema (unique for every event type (topic)) in

real-time.

GeoRSS

Ingestion

Service

PSSA Cloud

 External

GeoRSS Source

3
rd

 Party/XMPP

Cloud

Chat Users

PSSA-XMPP

Bridge

Service

IP Cam

Image Video

Ingestion

Service

External IP

Camera

Video Quality

Exploitation

Service

Video Tracking

Service

Data Storage

Service

Database Server

Simultaneous

Storage sessions

- Inserting the

event data into

different tables

with different

specified schema

50

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Enhanced Directory Service (with Persistent Repository): The Enhanced Directory Service is a

key core service which provides the ―plug and play‖ capability to the PSSA architecture, by

providing a mechanism for various services to publish their information and making these

information available to the subscribed services in the architecture. The initial version of this

directory service implementation had successfully addressed the need to dynamically publish

notifications of various service‘s and sensor‘s information (as shown below) to the subscribed

components in the architecture in real-time, but did not persist this information.

typedef struct

{

 PSS_DIRECTORY_CHANGE_ACTION action;

 PSS_DIRECTORY_ENTRY_TYPE entry_type;

 PSS_DIRECTORY_MOTILITY motility_type;

 PSS_DIRECTORY_GEOLOCATION entry_location;

 const char* name;

 const char* endpoint;

 const union

 {

 const char* topic;

 const char* service_contract;

 };

} PSS_DIRECTORY_ENTRY

As part of our prototype testing work during SATE and Year at the Edge (YATE) programs at

Tec^Edge, we learned that persisting the directory service entry information would increase the

reliability and scalability of the directory service and PSS. Thus, the directory service has been

enhanced to persist the entry information to a generic repository interface, which can be extended to

persist the information on any data storage and indexing system and for the present implementation;

a Network File System (NFS) repository is implemented.

The enhanced directory service was successfully tested and it has been verified that this

enhancement provides more reliability (i.e. in case of a directory service crash, the next instance can

pick up the up-to-date information from the repository seamlessly) and scalability (i.e. in an inter-

PSSA (Sky) setup, a PSSA cloud instance‘s directory service can provide the status of the services

in another PSSA cloud instance thru its persistence repository interface).

PSSA-XMPP Bridging Service: In brief, the PSSA-XMPP Bridging Service is designed to

bridge/ingest the chat messages from users participating in a given ―topic‖ chat/conferencing room,

as PSSA event messages in to the PSSA cloud and also vice-versa. This service provides two major

capabilities to the PSSA system; firstly, it provides a concept of viewing a chat user (with any third

party, off-the-shelf, XMPP chat client application) as a unique sensor (generating time stamped and

related chat (text and image) messages) that can publish events into the PSSA cloud like any other

ingestion service described earlier. Secondly, it provides a collaborative environment for

consumers of the PSSA system, to collaborate and analyze the data in the events being published

into the cloud, which are now can be accessed in real-time thru an off-the-shelf XMPP chat client.

As shown in Figure 13, this service is built by combing two bridging modules, the XMPP to PSSA

bridge module and the PSSA to XMPP bridge module.

51

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 13: PSSA-XMPP Bridging Service

The PSSA-XMPP Bridging Service is designed to bridge/ingest the chat messages from users

participating in a given ―topic‖ chat/conferencing room, as PSSA event messages in to the PSSA

cloud and also vice-versa. The XMPP to PSSA bridge module is responsible for observing a given

XMPP chat room with specific ―topic‖ and dynamically creating individual PSSA chat event

publishers per each registered user (registered with PSSA system with unique ID) in the chat, as

they become available. A sample chat event PSSA message is shown below:

Content-Type: text/xml

Content-Location: event

<Event topic="sensor.observation.text.chat:acquired?sensorid=24">

 <Context>

 <Producer>XMPPPSSABridge@192.168.1.104</Producer>

 <ReferenceSensorId>24</ReferenceSensorId>

 <Timestamp>2010-02-08T14:21:13.3320001</Timestamp>

 </Context>

 <Content>

 <XMPPMessage UserID="test[24]@programmer-art.org/Smack">

 <Message>Test message from user with id 24</Message>

 <GeoLocation Lat="40.73088" Lng="-84.05452" Elv="0.0" />

 <Date>30 Jul 2010 16:51:41 GMT</Date>

GeoRSS

Ingestion

Service

PSSA Cloud

 External

GeoRSS Source

3
rd

 Party/XMPP

Cloud

Chat Users/Collaborators

XMPP to

PSSA

IP Cam

Image Video

Ingestion

Service

External IP

Camera

Video Quality

Exploitation

Service

PSSA to

XMPP

PSSA-XMPP Bridge

Service

52

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 <Geocode Str="null" Cty="null" Ste="null" />

 <ImgAttached>true</ImgAttached>

 <Image type="complete-image" size="100" name="test.jpg" seq="0"

href="cid:chatimage" />

 </XMPPMessage>

 </Content>

</Event>

Content-Type: x-application/base64

Content-Location: chatimage

...frame bits...

As observed, the chat event message format is similar to the video event message format, except for

the attached second message part being base64 encoded image in place of MPEG-4 encoded frame

and with new XMPP Message block in place of the Video Frame block. The XMPP Message

provides the chat message information in ―Message‖ node and besides captures the complete

geographic location information to track and support mobile chat users (i.e. as mobile sensors in

system). Similarly, the PSSA to XMPP bridge module subscribes to the events of interest and

bridges them into the XMPP chat cloud appropriately. Apart from the PSSA SDK routines,

AGSXMPP library and other utility libraries are employed to develop the PSSA-XMPP bridge

service.

Dashboard Client: The main goal of developing an application like dashboard is to demonstrate

the basic capabilities of the PSSA and further provide a means to possibly develop interfaces to

build a complete sensor control and data management system. Further, like any other sensor in the

PSSA cloud, the dashboard has a built-in capability to publish text streams into the message cloud,

as a text stream sensor thru the PSSA-XMPP bridge service. More implementation details of the

dashboard can be found in Appendix A – PSSA Dashboard Reference Implementation.

OpenLST Client: OpenLST is the visualization platform developed to demonstrate various sensor

fusion capabilities being developed at the Discovery Labs at AFRL‘s Tec^Edge facility. The

OpenLST client was built using Java language SDK and as part of the effort to demonstrate the

PSSA capabilities and its ease of integration with OpenLST, the java bindings for the PSSA SDK

were developed as mentioned in Appendix C – Java Bindings for PSS SDK. Currently, the PSSA-

integrated OpenLST can support live ingestion of various sensor data with appropriate visualization

modules in real-time, with a new ability to detect and add new sensors to the platform seamlessly.

In addition, multiple OpenLST visualization platforms are able to simultaneously access the same

live data and exploitation results. As another benefit of integration, the PSSA provided

collaboration capabilities allowing users of the OpenLST to share text communication and sensor

feeds with one another.

These capabilities in the OpenLST are possible by utilizing the same low-level SDK module gluing

logic mentioned and described for the dashboard client in Appendix A – PSSA Dashboard

Reference Implementation. A screenshot of the PSSA Integrated OpenLST is shown in Figure 14,

with three sensors Video, GeoRSS and the Chat User. The PSSA Integrated OpenLST can support

live ingestion of various sensor data with appropriate visualization modules in real-time, with a new

ability to detect and add new sensors to the platform seamlessly.

53

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 14: PSSA Integration with OpenLST

Remote Service Launcher Service (RSLS): The RSLS is developed in the PSSA to provide a

means to possibly develop interfaces to build a complete service control and status management

system. As like any service in the PSSA cloud, the RSLS can receive request from the service

consumer, to launch or disable a particular service in the PSSA cloud. Further, its backend server

logic is designed with simple non-intelligent resource utilization technique to distribute different

services in the given cloud over a cluster of compute and store nodes appropriately.

The RSLS is developed using the PSSA SDK‘s java bindings, described in Appendix D, used to

integrate PSSA with OpenLST and the backend logic server is developed using Windows

Communication Foundation (WCF) technology. Moreover, the RSLS is tested and verified to

function, with a RSLS consumer plug- in developed for OpenLST platform as shown in Figure 15.

The Remote Service Launcher Service is developed to provide a mechanism to invoke and control

different services like Ingestion, exploitation and storage service in the PSSA cloud. Moreover, a

simple non-intelligent distributed resource utilization approach is implemented in the backend to

support this service.

54

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 15: Remote Service Launcher

Directory Service Observer: Like the Remote Service Launcher Service (RSLS), the Directory

Service Observer (DSO) was developed in the PSSA architecture to provide interfaces to support a

complete service control and status management system. In brief, the DSO is an HTTP wrapper

around the existing directory service in a given PSSA instance, which allows software components

that are not connected to the message bus interface thru the PSSA SDK to receive and monitor

service and sensor activity in the PSSA cloud. As part of our prototype testing activity during

SATE and YATE programs at Tec^Edge, the DSO, in combination with RSLS, was tested

successfully using a browser instance from an Open-SIM and Second-Life virtual world

environments for a project that required mapping real-world sensor activity to the virtual world and

vice versa.

4.1.6. PSSA Collaboration Services

Collaboration is an important capability for users of sensor visualization tools, so we‘ve built into

the PSSA reference implementation a simple mechanism to allow integrators and developers of

visualization tools to easily incorporate collaboration features into their visualization tools. These

collaboration capabilities are built upon the XMPP standard so that many CoTS and open source

XMPP clients can be used to collaborate, as well. XMPP technologies provide a lightweight

middleware to support instant messaging, remote presence, multi-user chat, voice and video calls,

PSSA Cloud

IP Cam

Video

IngestorExternal IP

Camera

Video Quality

Estimation

Service

Data Storage

ServiceDatabase

Server

Remote Service

Launcher

Service

On-the-Fly Invocation

Of the Services in a

Compute/Store

Cluster Cloud

OpenLST

Compute/Store

Cluster Cloud

Command to Invoke

Services in the Cluster

Command to Invoke

Services in the Cluster

Video

Tracking

Service

55

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

collaboration and routing of eXtensible Markup Language (XML) data. Utilizing this technology,

the PSSA supports a rich collaboration environment in which users of the system can exchange text

and, if the client device is so equipped, voice and video information.

In addition, PSSA supports the exchange of application context information allowing two or more

collaborators to view the same sensor data at the same time. In essence, this exchange allows one

user of the system to hand-off sensor data to other users of the system so that they can see the same

data while simultaneously maintaining text/voice/video communication. Collaboration services

developed for the PSSA provide the ability for users to create and administer dedicated logical

groups called ―topic‖ rooms, to participate in multiple ―topic‖ rooms, and to collaborate between

―topic‖ rooms. The messages sent from the users are published to message bus using a PSS-XMPP

message bus bridge, which translates the message sent from the user into a PSS event message.

Users and PSS services subscribed to the messages will receive messages.

Figure 16: PSSA Collaboration Approach

This approach effectively bridges the PSS message bus across the Internet allowing remotely

connected users to interact with the PSS system and, in addition, permits users using third party

XMPP-based tools to participate in the collaboration, as well.

4.1.7. PSSA SCALABILITY

A PSSA cloud instance is defined by its core services, which are intrinsically characterized by the

―Plug & Play‖ capabilities. This flexible feature of the PSSA architecture facilities the possibility

to further group multiple individual PSSA clouds in a higher level ―Plug & Play‖ sky architecture

shown in Figure 17. This envisioned sky architecture is possible by extending the functionality of

the currently existing directory service (one of the core services in a PSSA cloud instance) to

register itself (when it becomes available) with a global directory service (which defines the sky

instance) and also asynchronously push its local directory updates of publishers and services

(registered with it) into the sky‘s directory services.

M
e

s
s

a
g

e
 B

u
s

XMPP Cloud

Topic 1 Topic 2

XMPP – PSS Message

Bus Bridge

Subscriber

Publisher

Topic 1

Publisher

Topic 2

Subscriber

56

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 17: Integration of Multiple PSSA Clouds

Multiple PSSA clouds be grouped to build a PSSA sky architecture, which allows the possibility to

make an Ingestion Service (i.e. Publisher) information and events from one instance of the cloud in

the sky, available to the exploitation service (i.e. Subscriber) from another cloud in the same sky.

Additionally, the Sky‘s global directory service is responsible to push all the aggregated updates

(from all the clouds) back to all the clouds (which will have duplicate elimination process in it)

present in the Sky. Thus, an exploitation service registered with one of the clouds in the sky would

have information to subscribe to the PSSA sensor events that are being published in another

instance of the cloud in the same sky.

Further, from implementation perspective the PSSA SDK provides API calls to build the low-level

communication modules (like Publisher, Subscriber, Directory Service Observer and the service

provider) which are independent of each other in any given PSSA component (a PSSA-based

application). Hence, it is also possible to build complex Multi-Cloud PSSA components that can be

part of more than one PSSA cloud at any given time, like as shown in Figure 18.

PSSA Sky

PSSA Cloud #1 PSSA Cloud #2

PSSA Cloud #3 PSSA Cloud #4

Publisher

Subscriber

Directory

Entry List

Asynchronous Updates

Directory

Entry List

Directory

Entry List

Asynchronous Updates

Global Directory

Updates

(Asynchronously

aggregates all the Cloud

Directory Lists)

57

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 18: Multi-Cloud Connectivity

By leveraging the flexibility of the PSSA and using current PSSA SDK, it is possible to build

complex Multi-Cloud PSSA components that can be part of more than one cloud.

4.2 Interoperability

As mentioned in the Introductory Section, the goal of the PSSA is not to replace or supplant

existing sensor processing systems. Rather, it is to provide a platform for enhancing the integration,

exploitation, storage and visualization of sensor data from a variety of different sources. The PSSA

―plug and play‖ approach supports the development of ingestion services that can receive sensor

data from other sensor processing systems and make it available for storage and/or exploitation

within our high throughput computing environment. In addition, dissemination services can be

developed that implement the interfaces required to provide data to other systems and external

gateway data services can provide other PSSA components with interfaces to store and retrieve data

on external systems. The following subsections provide examples of PSSA-based systems have

integrated or could integrate with other systems.

4.2.1. Open Layered Sensing Testbed (OpenLST)

The OpenLST is a test environment developed at the Tec^Edge Discovery Lab in conjunction with

AFRL and several industry and academic partners. The OpenLST was originally designed to

display GIS vector and raster data that was pre-processed and stored on the local hard-disk or a

network connected GIS server. Prior to integration with PSSA, the OpenLST platform did not have

the ability to store or play back live sensor data. It also did not have the ability to apply algorithms

Cloud

Publisher

Directory Service

Observer (cloud

#1)

Directory Service

Directory Entry
(Publisher

Information)

Directory

Entry List

Event

Subscriber

Directory

Entry List

Asynchronous Updates

PSSA Cloud#1

Cloud
Directory Service

PSSA Cloud#2

Directory Service

Observer (cloud

#2)

Directory

Entry List

Asynchronous Updates

Event

Subscriber

Publisher

Directory Entry
(Publisher

Information)

58

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

to exploit the sensor data streams as the data was received. This limited its effectiveness as a

platform for future research, experimentation and demonstration.

PSSA provides the ability to store and playback live vector and raster data as it is being collected as

well as the ability to ―plug‖ in exploitation components as needed to meet application specific

needs. Integrating the OpenLST with PSSA allows OpenLST to take advantage of these abilities

and to expand its reach as an experimentation, research and demonstration platform. As an integral

part of the OpenLST platform, PSSA provides the ability for researchers to quickly and easily add

new sensors, exploitation algorithms and visualization layers to the platform.

In addition, multiple OpenLST platforms on the same network are able to simultaneously access the

same live data and exploitation results. As another benefit of integration, the PSS messaging

system provides collaboration capabilities that allow users of OpenLST to share text

communication and sensor feeds with one another and with third party chat users.

4.2.2. MATLAB

Integration

MATLAB
®

is a tool used by many scientists and engineers to develop algorithms for processing

sensor data. PSSA provides software components to allow exploitation algorithms written in

MATLAB

to be easily integrated into a sensor processing flow. This makes PSSA an ideal

platform for testing exploitation algorithms with a variety of different sensor data sources both real-

time and recorded. Examples of MATLAB

components built to work with the PSSA reference

implementation are included with the PSSA SDK.

4.2.3. Sensor Web Enablement (SWE)

The Open Geospatial Consortium (OGC) has published a set of standards and best practices known

as SWE. SWE compliant systems are currently in use or being developed for military, security, and

environmental monitoring purposes by organizations such as NASA, National Oceanic and.

Atmospheric Administration (NOAA), Consortium of Universities for the Advancement of

Hydrologic Sciences (CUAHSI), and the European Space Agency.

A PSSA system can act as an SWE client to collect and store sensor data generated by an SWE

compliant system. In this role, the SWE compliant system is treated as just another sensor type. A

PSSA ingestion component is developed to interact with the SWE compliant system using the

Sensor Observation Service (SOS) interfaces for synchronous data requests or a combination of

Sensor Planning Service (SPS) interfaces and Web Notification Service (WNS) interfaces for

asynchronous data requests.

In addition, if a SWE compliant system supports the generation of asynchronous alerts, an ingestion

component can be developed to receive these alerts using the SWE Sensor Alert Service (SAS)

interfaces to establish connection to the system(s) generating the alerts. The alerts become just

another type of asynchronous sensor data received and processed by the system.

Similarly, PSSA retrieval components can be developed that implement SWE compliant SOS

interfaces, SPS interfaces and/or WNS interfaces to allow the data ingested by the PSSA system to

be transmitted to an SWE client application before or after it is processed by the PSSA exploitation

services. By implementing OGC SWE standards, a PSSA-based system can become an integral part

of any existing or future SWE compliant system.

59

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

4.2.4. Distributed Common Ground System (DCGS)

DCGS is a program sponsored by the Department of Defense (DoD) to integrate Intelligence,

Surveillance and Reconnaissance (ISR) capabilities so that the information collected and processed

by these systems can be shared across all of the armed services. Integration to DCGS is

accomplished via the DCGS Integration Backbone (DIB).

The PSSA can support integration with DCGS through a purpose-built DCGS gateway that

implements the DIB 1.3 metadata framework and conforms to version 3.0 of the DCGS Discovery

Metadata Service. Using this gateway, PSS exploitation components can retrieve data from a

DCGS and data stored within the PSS system can be retrieved for use by DCGS. The DCGS

gateway component will be responsible for encapsulating all interactions between the PSS

components and the DCGS system including security, protocols and interfaces.

4.2.5. Cursor on Target (CoT)

CoT is a DoD standard for interchanging temporal and spatial data between sensor/weapon systems.

The PSSS can support interaction with CoT systems by providing purpose-built ingestion and

retrieval components that are CoT compliant. This allows data to be interchanged between a PSS

system and any other system that generates or accepts CoT messages.

4.2.6. Qbase Data Transformer (QDT)
™

The QDT is a powerful and flexible tool for data analytics, transformation, and workflow

management. A PSSA message bus source and destination component can be developed for QDT
™

that will allow any data published to the PSSA message bus to become a source data stream for

QDT processing and any data created by a QDT job to be published to the PSSA message bus.

Developing a PSSA message bus source and destination for QDT will allow a QDT job to be

created that can function as a PSSA ingestion component, application service, and/or dissemination

component. This capability could be used to provide non-programmers with the capability to build

complex exploitation solutions by graphically connecting QDT data transformation and processing

modules in a defined workflow and inserting the resultant QDT jobs into the PSSA processing

environment.

4.3 Usage Scenarios - Environmental Monitoring

4.3.1. Moisture Flux Assessment

Background: The total extent of irrigated acreage in the US is 56.6 million acres shared by about

301,000 farms. Of this irrigated area, an extent of 38.5 million acres is in the arid Western US. The

drought situation has exacerbated the concerns about water allocation and accounting of the

different sectors of water use. The larger water management concerns about efficiently irrigating

and about meeting the overall pressure on water demands owing to expansion of the cities,

especially under the circumstances of water shortages, logically have fallen into properly estimating

water requirements due to moisture flux or evapotranspiration (ET) in the irrigated areas.

The operation managers from the United States Bureau of Reclamation (USBR) were seeking to

apply advanced newer technologies for the estimation of ET to manage the water systems better.

The use of remote sensing techniques offered a pathway to answering questions related to quickly

estimating ET over large areas. In 2003, the USBR entered into a strategic alliance with the

60

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

International Center for Water Resources Management at Central State University in Ohio, the Ohio

View Consortium, and Colorado State University (Alliance Universities (AU)) for the development

of advanced remote sensing technologies for use in operational decisions to deal with future

constraining events.

This collaborative effort is a multi-year collection of ground based daily ET values for riparian

vegetation in the Lower Colorado Region (LCR) at locations with different densities of species. The

synchronous collection of data on parameters needed for remotely sensing ET at different altitudes

and on the ground was achieved during two intense phases of data collection in the summers of

2007 and 2008. Sensor measurements were taken on the ground, using low altitude flight

(helicopter) and medium altitude flight (aircraft) around the time of passage of Land Remote

Sensing Satellite System (LANDSAT) over the pilot study area.

Scenario: The USBR and AU, with assistance from US Geological Survey (USGS) and the US

Department of Agriculture (USDA), embarked on a systematic plan to conduct research on

estimating ET in the agricultural and riparian areas using remote sensing. The research plans

included ground based, state of the art instrumentation for measuring ET in the field. The emphasis

was placed on measuring ET in the riparian vegetation corridors wherein, the invasion of

undesirable species which apparently consume precious water occurs. The LCR between Parker

and Imperial Dams was chosen as the main pilot study area for riparian vegetation, see Figure 19.

This included the Palo Verde Irrigation District (PVID) and Cibola Wild Life Refuge (CWLR). A

secondary group headed by Colorado State University chose pilot study areas in the Arkansas River

and South Platte River basins in the Great Plains (GP) Region.

Figure 19: Region of Study

61

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Example: To leverage the PSSA, ingestion components are being developed to ingest, normalize

and store data from the aerial and ground based remote sensors from this project.

Inputs from the following sensors are stored within the PSSA:

 Bowen Ratio Towers

 Scintillometer Sensors

 Land Remote Sensing Satellite System (LANDSAT) Thematic Mapper

 Evaporation data from Lower Colorado River Accounting System (LCRAS)

 Meteorological data from California Irrigation Management Information System

(CIMIS)

 Multiple derived imagery products, such as derived vegetation indices, Normalized

Deviation Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), etc.

 Spectroadiometric measurements from low altitude flights

 Thermal sensing from medium altitude flights

This information is spatially and temporally indexed to facilitate comparative analyses by the AU

group. This architecture allows the AU to perform historical analysis of the data in addition to

allowing updated forecasts to be made as new data becomes available.

Figure 20: Scintillometer Sensors

This capability would enable USBR to perform automated blind testing of different methodologies

for estimating ET using remote sensing. As new methodologies become available, the platform will

allow a rapid assessment of their validity. This enhancement will facilitate the work being

performed by a panel from the team to evaluate the best existing methodology for the remote

sensing of ET using the ground based data. This unique feature would enable the USBR to adopt the

winning method for its use and quickly transition this methodology to practice.

62

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

The remotely sensed data requires various processing tasks to be performed to provide meaningful

results. Some of the algorithms that will be implemented within this framework are:

 Remote Sensing EvapoTranspiration (ReSET) model – AU-developed model allows the

generation of daily and seasonal ET estimates using satellite imagery (LANDSAT 5 and

7)

 Statistical models of ET from the PVID using CIMIS data and Moderate Resolution

Imaging Spectro-Radiometer (MODIS) EVI

 Statistical models of ET from the Bowen Ratio Towers

 Correlation between water use and bio-mass through an allometric equation to calculate

biomass

 Application of the Surface Energy Balance Algorithm for Land (SEBAL) and

Simplified-Surface Energy Balance Index (S-SEBI) energy balance models for the pilot

study area.

 Processing of the scintillometer data using Monin-Obukov correction

The implementation of these algorithms within the PSSA would facilitate the researchers in

performing more studies and experiments to validate their models. The outcome of these algorithms

allows for the prediction of ET and the identification of invasive species, such as Tamarix. Multiple

passes from the LANDSAT satellite can be more easily combined to monitor the seasonal

progression of Tamarix growth. In addition, the LANDSAT imagery is used for the classification of

ten land-cover categories; river, unvegetated land, fields, salt cedar, mesquite, cottonwood and

willow, arrowweed, atriplex, grass and marsh grass, creosote bush.

Figure 21: Spectroadiometric Measurements Using Low Altitude Flight

63

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 22: Thermal Sensing Using Medium Altitude Flight

Figure 23: Logical Overview of the Water Management Scenario

64

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

4.3.2. Environmental Disaster (Oil Spills) Background

Oil spills in the marine environment may have a wide spread impact and long-term consequences

on wildlife, fisheries, habitats, human health and livelihood, as well as recreational resources of

coastal communities. The degree of damage caused by these spills depends heavily upon the

amount of oil spilled, the properties of the oil and the sensitivity of the resources impacted.

The effects upon surface and subsurface marine life after a spill may be due smothering and

physical contamination of the chemical characteristics of the oil. The longevity of the oil is another

key factor of its impact on the marine environment.

The impact upon the coastal environment depends upon the composition of the coastline. For

example, mangroves and salt marshes are more sensitive to oil, whereas rocky coastlines are less

sensitive. Spills impact coastal and marine environments in many forms, some which are:

 Mortality of birds and other marine life

 Damage and loss of marine habitats

 Viability and diversity of coastal ecosystems

 Damage to fisheries and tainting of commercial seafood

 Damage to inter-tidal and inter-coastal flora and fauna

 Contamination of coastal recreational resources

 Disruption of power station cooling water or desalination operations

In general, marine oil spills may be classified into three categories:

 Port – These generally occur while ships are in port and may occur during

bunkering or berthing. They usually involve the discharge of oil from the bilges and

usually are the result of accidents or poor practices.

 Incidents – These are usually the result of shipping incidents; such as fires,

collisions, groundings, etc. Other causes may be drilling platforms or pipelines

which are damaged due to adverse weather or accidents.

 Intentional – These are the result of those who intentionally dump waste oil or oily

waters into the environment to save time or money.

Scenario: To effectively respond to an oil spill in the marine environment, responders need to

know the answer to the following questions.

 ―Where is the spill going?‖

 ―How fast will it get there?‖

To answer these questions, satellite, aerial, surface and sub-surface sensor information must be

analyzed and fused to create a holistic operating picture. Federal, State and Local agencies need

the ability to have a common operating picture to coordinate their response activities. These

agencies have different capabilities and expertise and ideally would provide a coordinated

response.

65

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Example: Leveraging the PSSA, ingestion components would be developed to ingest, normalize

and store data from some of the sources that would be available.

 Oil spill trajectory forecasts, National Weather Service, over flight information, tidal

amplitudes, etc.

 Tracking of sea surface oil – TerraSAR-X, MODIS and RadarSat-2 data

 Floaters – Provide real-time environmental data and oil slick observations

 Area base maps and vector data such as; slick expansion, boom placement and sensitive

habitats

 Insight from local experts

 Onsite reports; fishermen, boaters, etc.

The information from all of these sources would be stored in the PSS system and spatially and

temporally indexed. The PSSA would not only allow historical analysis, but the exploitation of

real-time data to make better predictions by fusing disparate data sources. An example of this may

be seen in Figure 24 to Figure 28. These projections were created using only over flight

information and NOAA forecast models. The accuracy of these forecasts may have been improved

by leveraging additional sensor information that would be available with a system based upon PSS.

Figure 24: Estimated Oil Boundary - 22 April

Figure 25: Estimated Oil Boundary - 30 April

66

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 26: Estimated Oil Boundary - 9 May

Figure 27: Estimated Oil Boundary - 18 May

Figure 28: Estimated Oil Boundary 31 May

Figure 29 shows components that might be part of a solution for monitoring an oil spill. The

ingestion and gateway components are responsible for acquiring and normalizing data and then

placing it on the PSS message bus for application services to exploit.

67

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

TerraSAR-X

Satellite
SAR Ingestor

Oil Trajectory

Service

Floaters
Floating Surface

Sensor Ingestor

Disaster

Monitoring

Client

Storage

Management

Service

Streaming Media

Server

WMS / WFS

Server

Media Players

GIS Applications

Directory

Services

M
e

s
s

a
g

e
 B

u
s

Ingestion Services

Dissemination

Core Services

SAR Processing

Application Services

External Gateways

Weather Service

Gateway

Regional

Weather

Station Service

Atmospheric

Correction

Service

Figure 29: Logical Overview of the Environmental Scenario

In this scenario, Satellite Synthetic Aperture Radar (SAR) data is being received every eleven days.

The data could already be preprocessed into usable imagery or this could be raw data that would

need to be further processed by other services. In this case, the SAR data and atmospheric

correction data would be pulled off of the bus by the SAR processing service. The resultant

processed SAR data would then be placed back onto the bus for storage, indexing, retrieval and

further exploitation.

As processed SAR scenes become available, the oil trajectory service would process these and

produce additional scenes that highlight possible areas where oil may be present and estimated

trajectories.

All of this data would be available to existing products through standard interfaces such as

WMS/WFS. In addition, custom clients can be created to provide enhanced functionality that eases

the integration and analysis of these large and disparate data sets.

Central Statue University is working on algorithms to detect the presence of surface oil and sub-

surface plumes. To accomplish this, hyperspectral images from LANDSAT 5 are being ingested

and analyzed from the Gulf of Mexico oil spill.

68

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 30 shows the results of the detection algorithm on a control image taken from the USGS on 7

April 2010 prior to the oil spill. It shows no oil present in the water (clouds highlighted in blue for

reference).

Cloud CoverWater

Figure 30: Reference Gulf of Mexico Image Prior to Oil Spill

Figure 31 (next) shows the results of applying the same detection algorithm to a LANDSAT 5

image taken 25 May 2010. Surface oil is highlighted in blue and sub-surface oil is represented by

an offset in red region. The veracity of this technique needs to be verified by samples taken in the

Gulf of Mexico. Central State is working to acquire additional data to support this work, such as dip

data from various depths and locations within the Gulf. These results would allow policy makers to

more easily answer the two key questions:

 ―Where is the spill going?‖

 ―How fast will it get there?‖

69

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Surface OilWater Subsurface Oil

Figure 31: Oil Detection with Hyperspectral Imaging

4.4 Usage Scenarios - Intelligence, Surveillance and Reconnaissance

4.4.1. Homeland Security

Problem Description: Protecting the health and well-being of war-fighters from chemical and

biological hazards is a key concern of the United States Armed Services that mirrors the ODA

mission to protect Ohio‘s food supply (livestock and poultry) from similar threats both intentional

and unintentional. As a result, ODA partnered with AFRL to sponsor a project at Tec^Edge during

the summer of 2010 to implement a system for detecting, tracking and responding to a simulated

outbreak of bovine hoof and mouth disease among Ohio cattle farms.

Scenario: COWPATH was based on the hypothetical scenario that, after the initial outbreak of an

epidemic, a predictive model (seeded by initial outbreak information) is deployed at a command

center to provide estimation in terms of time and geospatial spread of the disease in real-time.

Further, this predicted spread of the disease is validated against real-time observations from lab

veterinarians testing samples and field veterinarians present in the predicted infected areas

diagnosing the disease symptoms.

The flexible design and simple integration model provided by the PSSA framework allows it to be

easily adapted to support a variety of defense and homeland security related problems. A group of

Qbase engineers and AFRL sponsored student interns at Tec^Edge during the summer of 2010

utilized the PSSA framework to implement a system for detecting, tracking and responding to a

simulated outbreak of bovine hoof and mouth disease among Ohio cattle farms. This project

utilized the PSSA framework to connect real-time image and text data feeds and disease data

generated by a simulation program to a command and control center. The command and control

center utilized the PSSA enabled OpenLST platform to provide a geospatial view of the data as it

was being received in real-time. PSSA plug-ins, added to the OpenLST platform, provided the

ability to view data from various sensor feeds including smartphones and the disease simulator. It

also provided the means to collaborate with smartphone users in real-time via instant messaging

protocols.

70

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Utilizing the PSSA SDK, the team developed several components to support this demonstration.

These included an ingestion component to receive event data from the simulation program, an

ingestion component to receive alerts from smartphone equipped field veterinarians, and a PSSA-

enabled OpenLST platform for dissemination and visualization of the data collected by the system.

In addition, several layers of GIS data were also loaded into the system to provide relevant

geographic information such as farm locations, airport locations, soil types, and road/river networks.

Figure 32: Integrated View of PSSA-Based COWPATH Demo

The resulting demonstration system, shown in Figure 32, was successfully developed and

demonstrated over an approximate eight week period using primarily undergraduate student

resources to perform the programming work using the PSSA framework as the basis for integrating

the components.

4.4.2. Premises Security (Video Surveillance)

Problem Description: Many large security-conscious organizations utilize surveillance cameras,

security doors (with keycard, pin-pad, or biometric access), motion detectors, and sometimes other

sensors to monitor and control access to various parts of their campus and/or facilities. In many

cases, these are independent systems with limited ability to correlate or synchronize the data

collected across the various sensors. In addition, it may not be possible for limited security staff to

continuously monitor all of the surveillance video feeds. Oftentimes, if an incident occurs (theft,

assault, etc.), forensic analysis of hours of video from several surveillance cameras is required to

determine what happened.

Scenario: In order to provide security for its service members and employees, a large military base

deploys hundreds of video surveillance cameras with pan/tilt/zoom capability to monitor buildings,

streets, and walkways. Some buildings (e.g. laboratories) require keycard access while others are

UAV

Camera

AnyLogic

Simulation

Events

Publisher

Sim view

PSS Cloud

AnyLogic Simulation Framework

PSSA Bridged

XMPP Cloud

Field Veterinarians

OpenLST- SimView

Chat view

PSS Cloud

OpenLST- ChatView

Intelligent

Alerts

Logic

71

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

more accessible. All building entrances are in the field of view of one or more surveillance cameras.

Both the more public and secured entrances utilize electronic locks that generate an alarm if a door

is forced open. Interior motion detectors unlock doors from the inside to permit people to leave the

building when a door is locked.

Utilizing the PSSA, ingestion components can be developed to ingest and store data from

surveillance cameras, keycard access control systems, and motion detectors. The data captured

from these devices is time synchronized and stored in the PSS database. This capability

significantly improves forensic analysis by allowing analysts to easily identify segments of video

corresponding to periods of time when door lock alarms and/or motion detectors were triggered.

Even more important, however, is the ability to exploit the real-time sensor data to identify

anomalous activity as it occurs using the PSS application services to implement the exploitation

algorithms. Algorithms can be developed and plugged into the PSSA to identify anomalous

signatures such as activity occurring in a time and/or place it shouldn‘t be occurring or a secure

door being opened without a keycard. This information can be used proactively to alert security

personnel as well as to automatically increase the sensitivity and adjust the orientation of nearby

sensors to provide more detailed situational information.

Example: A PSS-ingestion component receives a signal from a secure door whenever it is opened

or closed. Metadata associated with this signal indicates where the door is located, whether the

door was opened or closed, and what time the door was opened/closed. If the door was opened,

additional metadata could include whether an interior motion detector or an exterior keycard device

unlocked it or if it was locked and forced open. If a keycard was used to unlock it, the unique ID of

the keycard is included in the metadata. If the door was closed, additional metadata includes the

length of time the door was open. This metadata could come from the security system that controls

the door or, if the information is not available from the security system, it could be generated by the

ingestion component. Either way, the ingestion component does not perform any further

interpretation of this data; it merely puts the data on the PSS message bus and lets a downstream

application service component exploit it.

Another PSS-ingestion component receives the video generated by a surveillance camera pointed at

a secure door. Metadata associated with the video includes where the camera is located, the time

interval in which the video frame was captured, the camera pan, tilt, and zoom settings, etc. This

ingestion component does not interpret the data; it just puts the video data and associated metadata

on the PSS message bus for a downstream application service component to process.

A PSS application service component analyzes the video stream to look for moving objects. If

moving objects are detected, the exploitation algorithm generates a track message and puts it on the

PSS message bus. The track message includes the location, direction and velocity of the motion.

Another PSS application service component implements a rule-based algorithm to determine

whether or not the opening of the door represents an anomaly and, if so, generates an alert message.

For instance, an alert might be generated if any of the following rules are true:

 The door was forced open (i.e. neither the interior motion detector or the external

keycard reader unlocked the door before it was opened)

 The door was opened at an unusual time. The definition of an unusual time could be

based on a statistical model that represents the normal usage of that door. (e.g. In the

72

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

past, the door was never been opened between the hours of 1 am and 5 am, but in this

particular instance it was opened at 3 am).

 The door was opened at an unusual time by a person not having designated access and

perhaps demonstrating anomalous entry and exit behaviors. Again, statistical norms

could be used to determine what constitutes normal usage of that door.

Statistical data used by rules 2 and 3, above, is derived from door sensor data previously captured

and stored by the PSS system.

A third PSS application service component receives the door sensor message and looks for track

messages from video sensors whose field of view includes the doorway. If a track is identified that

indicates additional anomalous activity (e.g. someone entering building when an egress is

expected), an alert message is generated and placed on the PSS message bus.

PSS storage components subscribe to the messages described above and, when received, store the

data and metadata contained within these messages in the PSS database for later retrieval.

A visualization client application could be developed that uses the PSS SDK to subscribe to alert

messages and request live/recorded video streams associated with the alert from the PSS streaming

media service. Alternatively, off-the-shelf GIS tools could be used to poll the PSS WFS service for

alerts and, once received, an off the shelf streaming video player could be used to retrieve a live

video stream or request a recorded video stream containing the data captured just prior to, during,

and after the alert was generated.

The diagram below illustrates the components that might be part of a solution for this scenario:

Security Door

System

Security Door

Ingestor

Object Detection

and Tracking

Surveillance

Camera

Streaming Video

Ingestor

Surveillance

Rich Client

Storage

Management

Service

Streaming Media

Server

WMS / WFS

Server

Media Players

GIS Applications

Directory

Services

M
e

s
s

a
g

e
 B

u
s

Ingestion Services

Dissemination

Core ServicesSecurity Door

Anomaly

Detection

Moving Object

Anomaly

Detection

Application Services

Figure 33: Application of PSSA to Premises Security

73

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

4.4.3. Pinpoint – Audio Localization Using Smartphones

Problem Description: As smartphones with audio capture capabilities become more common, it is

desirable to use these devices to monitor background noise levels to detect anomalous noise events

(such as gunfire or explosions). If enough of these devices ―hear‖ the suspicious noise, then using

triangulation techniques, it should be possible to identify the source location of the anomalous

sound(s).

Scenario: During a period of potential terrorist activity, concerned citizens and/or law enforcement

can activate the pinpoint application on their smartphone devices. When an event occurs that

generates a loud enough noise, each phone that ―hears‖ the noise can generate an alert notification

that includes a recording of the noise event and the time and GPS location of the smartphone at the

time the noise was ―heard.‖ If enough (minimum of four) smartphones detect the noise event, the

data from the phones can be used to determine an approximate location whence the noise occurred.

During SATE 2011, an intern program sponsored by AFRL at the Wright Brothers Institute -

Innovation and Collaboration Center (WBI-ICC) Tec^Edge Discovery Lab, a group of students

developed a prototype sound localization solution using Android smartphones with the ability to

capture sound events and transmit them over a WiFi or Cellular 3G/4G network to a processing

platform that could utilize this data to determine the location of the sound. Applying PSSA as a

solution architecture for this problem required the development of the following components:

1. Smartphone application to monitor for abnormal sound levels and when detected send this

information along with relevant metadata (time/location) via a TCP/IP connection to a

PSSA ingestion component.

2. A PSSA Pinpoint ingestion component that listens on a well-known TCP/IP socket for a

sound event from a Smartphone. This component packages the sound packet with its

associated metadata and publishes it as a PSS sound event.

3. A PSSA audio location registration component subscribes to the sound events and uses

the metadata (time and location) associated with the sound events to determine if they

correspond to the same event, and, if so, whether there is enough data to determine the

location of the sound event. If there is sufficient data, an estimated location and time of

occurrence is calculated and published to the PSS cloud along with the original sound

recordings.

4. A PSSA Sound Identification exploitation component subscribes to the output of the audio

location component in an attempt to classify the sound based on the audio

(frequency/amplitude) waveforms of the corresponding sound recordings. This analysis

could be used to distinguish between a gunshot, a car backfiring, an explosion, etc. If the

type of sound can be determined, then it is published to the PSS cloud.

5. OpenLST could be used as the visualization platform showing the estimated location and

time of the noise event along with the location of the smartphone devices used to locate the

noise.

The following diagram illustrates the components utilized in this scenario:

74

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 34: PSSA Pinpoint Solution

4.4.4. iStream – Using A Smartphone as a Real-Time Video Sensor

Problem Description: With the widespread deployment of smartphones with video recording

capabilities, it is desirable to use these devices as ―on the spot‖ video sensors when necessary to

support law-enforcement, anti-terrorist and/or search and rescue activities. Working together, these

―on the spot‖ video sensors can be used by command center personnel to get a much better

perspective of ground conditions and improve overall situational awareness.

Scenario: During a natural disaster emergency response personnel equipped with smartphones can

shoot video to provide command center personnel with a ground-level view of the situation. The

75

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

GPS positioning capabilities of the smartphone can be used to geo-locate the source of the video

footage and tag that location on a satellite image of the affected area.

If several smartphones are actively shooting video within a given geographical area, command

center personnel can choose which video streams to view and also select archived video streams

from the same location to gain a better awareness of the situation.

During SATE Summer at the Edge 2011, an intern program sponsored by AFRL at the WBI-ICC

Tec^Edge Discovery Lab, a group of students developed a prototype video streaming capability

using Apple iPhones as the video capture device. This solution was capable of delivering 10 frames

per second (fps) video from the iPhone to a server where the streaming video could be viewed then

be viewed.

The iPhone application utilized built-in functions and third3rd party libraries to capture the video,

decode it and post it to a server using an HTTP post. To apply this solution to PSSA required the

development of a custom video stream ingestion component that implemented the HTTP post

functionality to receive video frames from the iPhone and publish them as MPEG-4 frames to the

PSSA cloud. This allows PSSA components already developed to process MPEG-4 frames to store,

exploit, and display the streaming video data.

Previously, we developed PSSA modules to perform moving object detection and to measure video

quality attributes. By virtue of the ―plug and play‖ nature of the PSSA framework, these modules

can be used to process the video captured by the smartphones, as well. The diagram, below,

illustrates the PSSA components that could be utilized to enable this capability.

76

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 35: PSSA iStream Solution

77

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

5.0 CONCLUSIONS AND RECOMMENDATIONS

The first phase of the Persistent Surveillance Data Processing, Storage and Retrieval project focused

upon the research and prototyping of core technologies required to process, store and retrieve high

volumes of sensor data being delivered asynchronously at varying data rates. During our research,

we determined that the most pressing and technologically complex need was the need to handle

simultaneous streaming video data from air and ground based optical sensors.

As a result, we focused much of our prototyping effort for phase one in building components to

make sure that the architecture met those needs. Through various prototypes and research efforts,

we designed and evolved the PSSA to address many of the issues associated with processing,

storing and retrieving sensor data.

Although the existing PSSA prototype system lacks many of the desired capabilities described in

this document, it has been successfully used to support a number of demonstrations both at Qbase

and in conjunction with AFRL. Through these demonstrations, the versatility of this architecture

and the simplicity by which it can be applied to solve a variety of sensor related integration

problems have been proven. During the summer and fall of 2010, a number of undergraduate

student teams sponsored by the AFRL Discovery Lab at Tec^Edge have used the PSSA framework

and SDK to quickly develop solutions that integrate sensors with storage, visualization and control

platforms.

During the spring and summer of 2011, we were provided some additional funding to enhance the

PSSA reference implementation to support Year at the Edge (YATE) and Summer at the Edge

(SATE) projects. These projects are summarized in the previous section (Pinpoint and iStream).

Once again, PSSA proved to be flexible and easy to integrate with the student led projects to further

enhance the application of layered sensing to solve real-world problems identified by AFRL. In

addition, PSSA continues to be used to support phase II of the Information Quality project (TO-

006). To this end, we added the capability to easily integrate MATLAB
®
 based exploitation

algorithms and incorporate sensor persistence into the PSSA directory services.

In phase two of this project, we plan to build upon these core technologies by implementing

components necessary to field an operational system including expanded directory services, system

management and deployment tools, user management and security tools, integration with high

speed storage and messaging systems, etc.

Figure 36 shows a sample of the key components of such a system.

78

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure 36: PSSA Logical Architecture

5.1 Dissemination Services

These services provide standard and custom interfaces for querying and retrieving data and products

from the system. In Phase I, we implemented dissemination services for media streaming and

geospatial vector and raster dissemination. In phase two, we will expand the set of available

interfaces to provide a richer set of connections for third party clients. In collaboration with our

partners, additional components will be developed that leverage these interfaces for providing data

to other systems.

5.2 Core Services

The PSSA includes a standardized Core Services layer which is responsible for providing the key

infrastructure required to support the integration of the components in the customizable software

layers. In the first phase, we developed the minimal capabilities required to demonstrate the

system.

The expansion of these services will be a focus of phase two and are critical to standing up and

supporting an operational system. In addition, we will enhance the capabilities of the PSSA

Software Development Kit to provide access to these additional core services.

79

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

5.3 Processing Services

These components subscribe to information published by ingestion or other application service

components and process (―exploit‖) the data thereby adding value. In Phase I, we developed

reference implementations of text and video storage and processing services. In Phase Two, we will

expand the suite of algorithms and ingestion services available to users of the PSSA system

including adding support for algorithms written in MATLAB.

During Phase II, we will also investigate the integration Qbase‘s QDT

tool to allow users to create

custom visual data flows that will execute within the PSS architecture. This will allow non-

technical users the ability to easily create a data flow that extends the capabilities of the system.

5.4 Communication Services

These are interfaces by which external services and systems access the PSSA. They allow

information and sensors to be ingested and products to be disseminated. In Phase I, we

implemented services to support web, text and streaming media. In phase two, we will expand the

set of supported protocols. These will be chosen in collaboration with our partners.

5.5 Hardware and Networking

The proposed hardware architecture for Phase II of the Persistent Surveillance Data Processing,

Storage and Retrieval project consists of a high throughput compute cluster (HTCC) and a high

performance storage cluster (HPSC) interconnected using a low latency, high bandwidth Infiniband

network. Using currently available Infiniband switches, a network consisting of up to 648 total

nodes can be configured. The optimal number of nodes and the mix between HTCC nodes and

HPSC nodes is dependent upon the processing and storage requirements of the solution.

The high throughput compute cluster consists of a collection of commodity multi-core rack mount

servers. Depending upon the processing needs of the system, each node can scale from entry level

systems at a price point of $3000 to high-end systems at a price point of $20,000. The following is a

nominal configuration for a potential compute node:

 2U Rack Server: 4 x AMD Opteron 6136 (2.4GHz, 8 cores/each, 32 cores total)

 Windows Server 2008 R2 HPC Edition

 64 GB RAM (32 x 2GB 1333MHz Dual Ranked RDIMMs)

 900GB RAID 10 storage (6 x 300GB hot-swap 15K RPM SAS 6.0GB/s hard drive)

 40GB/s IB Network Interface Card

 NVIDIA Tesla C1060 GPU (240 streaming processor cores @ 1.3GHz, 4GB DDR3

RAM)

Cost of this configuration is estimated to be approximately $12,500 per node.

The following is a nominal configuration for a Storage node:

 3U Rack Server: 2 x AMD Shanghai Opteron 2384 (2.7 GHz, quad core, 8 core total)

 Windows Server 2008 R2 HPC Edition

 32GB RAM (16 x 2GB 677MHz Registered DDR2 ECC)

 4.8TB RAID 10 storage (8 x 600GB hot-swap 10K RPM SATA 6.0GB/s hard drive)

80

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 40GB/s IB Network Interface Card

Cost of this configuration is estimated to be approximately $11,500 per node.

For the reference implementation of the hardware and network architecture, the ideal configuration

will be 4 compute nodes and 4 storage nodes. This should provide enough of a test bed to build a

robust sensor processing system with the capability to benchmark system performance while

addressing real-world processing problems such as geo-registration, object detection and tracking,

change detection, sensor data fusion and information quality.

In addition to the hardware listed above, an Infiniband 40 GB/s switch will be required to

interconnect the nodes of the network. Total cost of the hardware portion of the phase II reference

implementation is expected to be approximately $120,000.

5.6 Commercialization

Qbase is actively investigating commercial opportunities that can leverage the research performed

under this task order. Several promising leads are being pursued with federal government agencies

as well as state and local government organizations. The architecture and design principles

resulting from our research and described within this document provide a solid framework upon

which Qbase can build commercial solutions to capture, process, and display sensor data from a

variety of sensor devices in a ―layered‖ format synchronized in time and space.

81

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

6.0 REFERENCES

Bibliography

Rizzi, A. and Gatta, C. and Marini, D., A new algorithm for unsupervised global and local color

correction, PRL(24), No. 11, July 2003, pp 1663-1677.

Geo Frame Works. (2009). http://www.geoframeworks.com/articles/WritingApps2_3.aspx

Dilution of Precision (GPS); (2009).

http://en.wikipedia.org/wiki/Dilution_of_precision_(GPS)#Meaning_of_DOP_Values

The Times-Picayune (2010). http://www.nola.com/news/gulf-oil-

spill/index.ssf/2010/05/gulf_of_mexico_oil_spill_anima.html

Gilbert, T.D. (1997); Remote Sensing and Surveillance of Oil Spills, in Proceedings of 7
th

 National

Plan Scientific Support Coordinators Workshop, 22-26 September 1997, Darwin.

Gilbert, T.D. (1998); Maritime Response Operations- Requirements for Met/Ocean Data and

Services. In proceedings of the Conference on Meteorological and Oceanographic Services for

Marine Pollution Emergency Operations (MARPOLSER 98) 13-17 July 1998, Townsville, Pub

WMO/IMO.

Brekke, Camilla and Solberg, Anne. (2004) Oil Spill detection by Satellite Remote Sensing. In

Remote Sensing of Environment 95, November 2004, Elsevier.

NOAA. (2009). http://www.noaa.gov/

Buttingsrud, Bård. 2005, Superresolution of Hyperspectral Images. Chemometrics and Intelligent

Laboratory Systems, pp. 62-69.

Subramaniana, Suresh. Methodology for hyperspectral image classification using novel neural.

Methodology for hyperspectral image classification using novel neural. [Online] April 1997. [Cited:

04 20, 2010.] http://www.techexpo.com/WWW/opto-knowledge/NNET.pdf.

Zhaozhong Wang. Image Analysis and Recognition. tronto : Springer, 2006.

Bakker, W.H. 2002. Hyperspectral Edge Filtering for Measuring Homogeneity. ISPRS Journal of

Photogrammetry, pp. 246– 256.

ISL; Image Change Detection for IED Detection. www.isl.eu. [Online] [Cited: 4 20, 2010.]

http://www.isl.eu/Content/Image%20Change%20Detection%20for%20IED%20Detection.aspx.

Additional Resources

The following websites were referenced to gather background information used to put together

certain sections of this report:

 ZeroMQ Messaging System:

 http://www.zeromq.org/

 Time synchronization and leap second issues

82

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 http://www.ucolick.org/~sla/leapsecs/onlinebib.html

 Spatial synchronization and information quality metadata:

 http://www.fas.org/irp/doddir/usaf/afpam14-210/part13.htm

 http://gpsinformation.us/main/errors.htm

 http://users.erols.com/dlwilson/gps.htm

 http://portal.opengeospatial.org/files/?artifact_id=33234

 Integration with other systems:

 DCGS: http://www.dtic.mil/cjcs_directives/cdata/unlimit/3340_02.pdf

 DCGS/DIB: http://www.disa.mil/nces/dev_tech_resources.html

 DCGS/DIB: http://www.dtic.mil/ndia/2004interop/Tues/meiners.ppt

 DIB: http://www.hanscom.af.mil/news/story_print.asp?id=123153749

 DDMS: http://metadata.dod.mil/mdr/irs/DDMS/

 PULSENet: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5067463

 PULSENet: http://www.is.northropgrumman.com/products/pulsenet/index.html

 SensorNet/CBRN:

http://www.sensornet.gov/net_ready_workshop/Tom_Johnson_August_02_2006_Bri

ef.pdf

 SensorNet/Briefings: http://www.sensornet.gov/net_ready_workshop/

 SensorNet: http://www.sensornet.gov/sn_overview.html

 IEEE P1451: http://ieee1451.nist.gov/

 CCSI: http://www.jpeocbd.osd.mil/packs/Default.aspx?pg=860

83

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

APPENDIX A – PSSA DASHBOARD REFERENCE IMPLEMENTATION

Overview:

Processing Services Commercialization: Qbase is actively investigating commercial opportunities

that can leverage the research performed under this task order. Several promising leads are being

pursued with federal government agencies as well as state and local government organizations. The

architecture and design principles resulting from our research and described within this document

provide a solid framework upon which Qbase can build commercial solutions to capture, process,

and display sensor data from a variety of sensor devices in a ―layered‖ format synchronized in time

and space. This section provides a description of a reference implementation of a sample

dissemination and collaboration application, which will be referred hereafter as ―PSSA Dashboard‖

or ―Dashboard.‖ As shown in Figure A-1, the main goal of developing an application like

dashboard is to demonstrate the basic capabilities of the PSSA and further provide a means to

possibly develop interfaces to build a complete sensor control and data management system.

Further, like any other sensor in the PSSA cloud, the dashboard as a built-in capability to publish

text streams into the message cloud, as a text stream sensor (I.E. the concept of representing people

as feed generating sensors).

Figure A-1: PSSA with PSSA Dashboard

Figure A-1 is pictorial representation of PSSA cloud‘s reference implementation that can support

collaboration among multiple users and support ingestion, storage and dissemination of the sensor

data. The primary goal of developing an application like Qbase PSS dashboard is to demonstrate

the basic capabilities of the PSSA.

UAV

Camera

Video Frame

Ingestor

Surveillance

Camera

Streaming Video

Ingestor

Vehicle Motion

Detection

Service

Video

Information

Quality Service

Storage

Management

Service

Streaming Media

Server

WMS / WFS

Server

Media Players

GIS Applications

Directory

Services

Ingestion Services

Dissemination

Core Services

Algorithm Processing

Matlab Camera

Simulator

XMPP Cloud

Topic 1 Topic 2

PSS <-> XMPP

Bridge

PSSA Cloud

Qbase PSSA Dashboard

84

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Layout, Login & Initialization: As shown in Figure A-1, the layout of PSSA dashboard, as of

today, has been designed to accommodate five functional areas in it:

 Sensor Feed Visualization or Manipulation (SFVM) (contains a tab view of

Surveillance, Information Quality and the Collaboration windows).

 Registered Sensor Status Tracker (RSST).

 PSSA Components & other Infrastructure Tracker (PCIT).

 Text Event Stream Visualization (TESV).

 External Service Initiator (ESI) (Quick Launches to Google Earth, VLC Player and

Pidgin Client).

The Modal ―Select Session‖ window, on the application startup, provides a way to select and assign

a unique identification to the user/analyst so that he/she can employ the dashboard for possible

collaboration with other dashboard or third party application users present in the given PSSA cloud

instance.

Figure A-2: Dashboard Screen Layout

Figure A-2 shows a screenshot of the PSSA Dashboard startup view with modal window to select

the user‘s identification (as a sensor-id), to represent themselves as a sensor feed publisher into the

PSSA cloud. Additionally, the indicators point to the five functional areas of the dashboard‘s

layout.

Sensor Feed

Visualization or

Manipulation

Registered Sensor

Status Tracker
Text Event Stream

Visualization

PSSA Components&

Other Infrastructure

Status Tracker

External Service Initiator

85

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Besides the directory service, (and other core PSSA services, like Data Storage and Media Storage

Services, shown previously in Figure 35) which defines the PSSA cloud instance, the dashboard

requires three external servers to support the above mentioned first four functional areas. These

external servers are:

 WMS Server

 Database Server

 XMPP Server

Presently, the GeoServer is installed as the WMS server, which serves the image tiles of Orthophoto

data of the Ohio campus to the Surveillance tab of ―Sensor Feed Visualization or Manipulation‖

area. The database server requirement is accomplished by the Postgis/Postgresql server instance,

which presently stores the static data like the limited user identification values (Intelligence

Analyst, Researcher & First Response Dispatcher for Login window and Registered Sensor Status

Tracker) and the registered video camera sensor‘s metadata (primarily the location, as a point data

accessible via a WFS request) to populate the ―Registered Sensor Status Tracker‖ and also to place

active/inactive flags on the Map display (as shown in Figure A-2 in the Surveillance tab of ―Sensor

Feed Visualization or Manipulation‖ area. An OpenFire real- time collaborative XMPP server is

employed as the XMPP server to support the collaboration activities thru the dashboard (details

would be explained in the later sub-sections). The dashboard presently receives the information

regarding the presence of these servers and the PSSA directory service thru a configuration file as

shown below:

<!-- common -->

 <add key="GisServerHostAddress" value="http://qdsensor-

stor01.cert.qbase.us:8080/geoserver/wfs?service=wfs"/>

<!-- pss.dashboard.modules.systemcomponentsobservationservice -->

 <add key="DirectoryServicesAddress" value="tcp://127.0.0.1:5555" />

<!-- Pss.Dashboard.Modules.FeedRepositoryService -->

 <add key="WfsGetFeatureSensorRegistry" value="<?xml version="1.0"

?><GetFeature version="1.1.0" service="WFS"

xmlns="http://www.opengis.net/wfs"

xmlns:pss="http://us.qbase.afrl/pss" outputFormat="text/xml;

subtype=gml/3.1.1"><Query

typeName="pss:sensor_registry"/></GetFeature>" />

 <add key="WfsGetFeaturePersonRegistry" value="<?xml version="1.0"

?><GetFeature version="1.1.0" service="WFS"

xmlns="http://www.opengis.net/wfs"

xmlns:pss="http://us.qbase.afrl/pss" outputFormat="text/xml;

subtype=gml/3.1.1"><Query

typeName="pss:users"/></GetFeature>" />

<!-- pss.dashboard.modules.infrastructuremonitoring -->

 <add key="GeoServerHostAddress" value="http://qdsensor-

stor01.cert.qbase.us:8080/geoserver/wfs?service=wfs&version=1.1.0&request=GetCapa

bilities&namespace=pss" />

 <add key="SharedDatabaseServerConnectionString" value="Server=qdsensor-

stor01.cert.qbase.us;Port=5432;Database=pss_demo;uid=postgres;pwd=Password123!"/>

 <add key="XmppMonitorUserName" value="xmpp_monitor_user"/>

 <add key="XmppMonitorPassword" value="xmpp_monitor_pwd"/>

<!-- pss.dashboard.modules.feeditemservice -->

86

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 <add key="XmppServiceAddress" value="qdsensor-stor01.cert.qbase.us" />

 <add key="XmppRoomName" value="sensor.observation.text.georss.acquired" />

<!-- Quick Launch paths -->

 <add key="GoogleEarthAppPath" value="C:\Program Files\Google\Google

Earth\client\googleearth.exe" />

 <add key="VlcAppPath" value="C:\Program Files\VideoLAN\VLC\vlc.exe" />

 <add key="XmppClientAppPath" value="C:\Program Files\Pidgin\pidgin.exe" />

Sensor Feed Visualization or Manipulation & Registered Sensor Status Tracker: The sensor feed

visualization or manipulation area consists of tab view of Surveillance, Information Quality and the

Collaboration windows, which are functionally active and are completely integrated with the PSSA

cloud components at the runtime.

Surveillance Module: The Surveillance tab view provides a perceived surveillance scenario of

monitoring the four video camera sensors that are installed and registered with the PSSA system for

a given campus area. From the developer‘s perspective, the ESRI Windows Presentation

Foundation (WPF) components was employed to render the orthophoto of the Ohio campus

imagery at different zoom levels. ESRI map controller was proven to easily integrate into the

dashboard and allowed placing the WPF controls and sensor location icons on the rendered image.

The ESRI map controller module pulled the imagery from the above mentioned Geoserver, which

already had static data loaded into it. The real-time on- line or off-line status of the video camera is

communicated to the Surveillance tab view module, from the PCIT functional module of the

dashboard, in response to which the golden flag at the camera location is turned into green

indicating the status of the camera to be on-line (as shown in Figure A-3).

Figure A-3: PSSA Dashboard with Live Video Feed

Figure A-3 shows a screenshot of the PSSA Dashboard, with a live camera (camera #1) transmitting

real-time video frames into the surveillance tab view. It should be noticed that the golden flag,

indicating the off-line camera is turned into green flag for the on-line camera. Moreover, the RSST

and the flag coloring on the map, corroborate each other for the camera #1 status. Further, the PICT

87

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

listed the RTSP Video Ingestor to be active component publishing video frame events into the

PSSA cloud from an on-line camera. Finally, the user can click on the on-line camera flag and

visualize the real-time video feed in a modeless window, with appropriate timestamp information

intact with the video frames.

Further, as shown in Figure A-3, the user can click on the live cameras and receive the real-time

video frames from the installed camera thru the PSSA – RTSP Video Ingestor component in the

cloud as the video frame events. The process of detecting, receiving and visualizing PSSA events is

explained in the below sub-section.

Detecting, Receiving and Visualizing the (Real-Time PSSA Video) PSSA Events in the

Dashboard (Developer’s Perspective): The communication between the PSSA cloud and the

dashboard is established thru the managed C++ wrappers around the C++ PSSA SDK library. The

SDK provides a way to receive the list of the PSSA components (like RTSP Video Ingestor,

GeoRSS Ingestor, Media Storage Service) as they become available, to all subscribers present in the

PSSA cloud. This runtime notification is possible thru the process of registration, that every PSSA

component as to complete as part of their initialization process.

This component registration process, thru SDK, communicates its presence to the directory service

with its endpoint address, publishing event ―topics‖ and optional target sensor identification (for

ingestion components). The dashboard has the directory service subscriber module in it, which gets

the event publisher information (endpoint, event ―topic‖ and the sensor id) present in the directory

service. This information is communicated to an event subscriber that can receive the events and

has the necessary logic to interpret the event messages.

The current version of the dashboard modules, particularly the PICT, relies on the directory service

subscription and maps the sensor id (from the directory service entry) to the camera id (present in

the database) to determine its status (I.E. on-line or off-line). The RTSP Video Ingestor, publishes

the video frame events using the below established video event message template:

MIME-Version: 1.0

Content-Type: multipart/related; boundary=MIME_boundary;

--MIME_boundary

Content-Type: text/xml

Content-Location:

event

<Event topic="sensor.observation.media.video:acquired?sensorid=1234">

<Context>

<Producer>Ingestor@192.168.1.104</Producer>

<ReferenceSensorId>12</ReferenceSensorId>

<Timestamp>2010-02-08T14:21:13.3320001</Timestamp>

<Location>

<Position>POINT(30

30)</Position>

</Location>

</Context>

<Content>

<VideoFrame type="partialFrame|keyFrame" bitsPerSecond="20000"

width="320" height="240" samplePeriod="P0.033S"

presentationTime="2010-02-08T14:21:13.3320001" href="cid:frame1"

/>

mailto:Ingestor@192.168.1.104

88

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

</Content>

</Event>

--MIME_boundary

Content-Type: x-application/MPEG-4-frame

Content-Location: frame1

...frame bits...

Figure A-4: Selecting a Recorded Video Stream

Figure A-5: Viewing a Recorded Video Stream

89

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure A-4 and Figure A-5 are screenshots of the PSSA Dashboard, with a Media Storage (for

camera #1) transmitting archived video frames into the surveillance tab view. The selection

timeline in Figure A-4 and Figure A-5 indicates the camera on-line period (video availability) using

blue strip and off-line period using grey strip. In the present dashboard version, the timeline is

received from the Post GIS server, which is populated by the Media Storage Service during the

recording phase. Further, it can be noticed that the PCIT module is indicating the presence of the

Media Storage Service component present in the system. As noticed, the message template for the

individual video frame event consist of the context and the content information, using which a given

frame can be decoded into an appropriate image format (currently a bit map) to render it in the

video window. The PSSA SDK provides MPEG-4 video decoding routine, which is used in the

video display module of the dashboard.

The same concept of receiving and visualizing the video frames from a live ingestion component

(RTSP Video Ingestor) also applies to the archived video stream for a particular camera/sensor,

which can be streamed on-demand from the Media Storage Service (as shown in Figure 35 and

Figure A-3).

Currently, though the archived video frames are received thru the PSSA cloud, the timeline for the

playback shown in Figure A-2 that indicates the camera on-line period (blue strip) and off-line

period (grey strip) is received from the postgres server (which contains the timestamps of the video

segments populated by the Media Storage Service, during the live stream recording). Thus, the

surveillance module uses two video event subscribers and a database query to accomplish its

presumed surveillance functionality. Though, the TESV module is part of the Surveillance

module, because of its dependency on other modules of the dashboard, its functionality would be

explained later in this report.

Information Quality Module: PSSA can support real-time exploitation of the sensor data stream

and to demonstrate this capability, an Information Quality Module is built into the SFVM module.

The goal of this module is to visualize the real-time data stream from a specific video camera

(registered with the PSSA system) thru a ingestion component and also capture the generated

quality metric events , which are being simultaneously computed on the same video events thru an

exploitation (publisher) component. As shown in the figure, it is obvious that the video frame

decoding and display module uses the same technique, which was mentioned with respect to the

surveillance view module. Further, the quality metrics generated event template‘s content are as an

XML as shown below.

<Content>

<VideoFrameQualityMetric metric_name = “NoiseRed” metric_value = “0.99”

unit = “db window= “1” frame= “30” / >

<VideoFrameQualityMetric metric_name = “NoiseBlue” metric_value = “0.99”

unit = “db window= “1” frame= “30” / >

<VideoFrameQualityMetric metric_name = “NoiseGreen” metric_value =

“0.99” unit = “db window= “1” frame= “30” / >…………………

 </Content>

The above quality event message is handled by an event subscriber module, present in the

information quality module, which displays the metrics appropriately in the window as shown in

Figure A-4. Thus, the information quality module uses one video event subscriber and a quality

event subscriber to accomplish its presumed real-time exploitation functionality. Current version of

90

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

the dashboard is hardcoded to support quality metric visualization for only on the camera with

sensorid ―2.‖

Figure A-6: Dashboard Displaying Information Quality Metrics

Figure A-6 shows a screenshot of the PSSA Dashboard, with a live camera (camera #2) transmitting

real-time video frames into the Information Quality View, along with the display of the real-time

quality metrics like noise and SSIM that were computed on the video frames by a Information

Quality Exploitation service. Further, it can be noticed that the PCIT module is indicating the

presence of the video quality (i.e. the exploitation component) publisher component present in the

system.

91

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Collaboration Module: Collaboration services developed in the PSSA provide the ability for users

to create and administer dedicated logical groups called ―topic‖ rooms, participate in multiple

―topic‖ rooms, and collaborate between ―topic‖ rooms. The messages sent from the users are

published to message bus using a PSSA-XMPP message bus bridge, which translates the message

sent from the user into PSSA text/image event messages, as shown in Figure A-5. Users and PSSA

components subscribed to these topics will receive messages. Currently, the collaboration module

developed in the PSSA dashboard is a customized chat application module that only supports

sharing text messages as shown in Figure A-6. As mentioned, the text chat messages are sent to the

XMPP server present in the system or any server on the internet, from which a PSSA- XMPP bridge

service has to be configured to publish these text messages as a text/image stream events into the

PSSA cloud. Currently, the dashboard can support collaboration through a single hardcoded ―topic‖

room on a given XMPP server. Further, the image share support is not provided in the current

version of the dashboard.

XMPP Cloud

Topic 1 Topic 2

PSSA <-> XMPP

Bridge

PSSA Cloud

Qbase PSSA Dashboard

Figure A-7: Collaboration Using PSSA<->XMPP Bridge

The figure above shows that this approach effectively bridges the PSSA message bus across the

Internet allowing remotely connected users to interact with the PSSA system and, in addition,

permits users using third party XMPP-based tools to participate in the collaboration, as well.

92

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure A-8: PSSA Dashboard Collaboration View

PSSA Component & Infrastructure Tracker: This is the critical module of the PSSA dashboard,

which provides the information of all the available PSSA components present in the given PSSA

cloud and also the information regarding the other external servers under the below five categories:

 Publishers

 Service Providers

 Database Servers

 GIS Servers

 XMPP Servers

The publishers and the service providers are the categories of the PSSA components that become

available in the PSSA cloud at runtime. The presence of these components in the PSSA cloud is

communicated to the directory service (provided as a part of the dashboard configuration data) thru

a registration process (explained earlier in this report). The PICT module has a directory service

subscriber module in it, which gets the event publisher‘s and the service provider‘s information that

is present in the directory service at runtime and updates the information in the PICT area.

In the current version of the dashboard, the status or health of the PSSA components is not

monitored directly, but instead it is deduced from the component‘s entry in the directory service

only. As already discussed earlier, it can be noticed in Figure A-1 through Figure A-4 that the PICT

tracks the PSSA components in the cloud and also drives the SFVM and RSST modules

appropriately.

The database servers, GIS servers and XMPP servers are tracked by different tracking modules that

take the information regarding these servers present in the system (provided as part of the

dashboard startup configuration file). These tracker modules ping these servers for their availability

93

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

on regulr intervals and update the information in the PICT area, as shown in the Figure A-1 through

Figure A-4.

Text Event Stream Visualization: This is the sub-module of the surveillance module and it is

responsible to capture the chat messages from the topic room of the XMPP server (as shown in

Figure A-5) and detect (filter) only those messages that follow a GeoRSS message event template

as shown below:

<Event topic="sensor.observation.text.georss:acquired?sensorid=GeoRSS03">

 <Context>

 <Producer>producer1</Producer>

 <ReferenceUserId>GeoRSS03</ReferenceSensorId>

 <Timestamp>2010-04-

21T15:30:29.623000</Timestamp>

 <Source> <Description>USGS</Description>

<InetAddress>http://somewhere.com</InetAddress>

 </Source>

 </Context>

 <Content>

 <FeedItem title="Major event happened here" description="Lorem ipsum

dolor sit amet, consectetur adipiscing elit. Aenean auctor, metus in iaculis

fermentum, massa ligula imperdiet libero, eget accumsan nunc nisl vitae est. "

pubdate="2010-04-15T13:40:59" geolocation="POINT(-83.0196 40.00173)" />

 </Content>

</Event>

These filtered messages are then parsed for the location, title, description and author information

that is present in the above sample message and is appropriately displayed in the TESV area and

also a GeoRSS icon is placed with the description information on the map area . A sample GeoRSS

message event that was displayed in the surveillance view is shown in Figure A-9.

Currently, the dashboard doesn‘t have the direct implementation of the GeoRSS message event

subscriber in it, but the GeoRSS messages from the PSSA cloud are bridged into the XMPP

―sensor.observation.text.georss.acquired‖ room thru the same collaboration bridge service mention

in the Collaboration Module Section.

94

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure A-9: PSSA Dashboard Showing GeoRSS Feed

Figure A-9 shows a screenshot of the PSSA Dashboard, with a GeoRSS event being displayed in

the TESV area and on the map area of the surveillance module. Currently, the GeoRSS events are

bridged from the PSSA cloud to an XMPP chat room (like ―sensor.observation.text.georss.

acquired‖), through which the messages in the chat room are filtered based on the GeoRSS event

template mentioned in the report.

External Service Initiator: This is an experimental module that was placed to start external

services like Google Earth, Pidgin chat client and a VLC player.

95

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

APPENDIX B – TUTORIAL FOR BUILDING PSSA COMPONENTS (SDK REFERENCE

IMPLEMENTATION)

Introduction:

Overview: PSSA is an event driven message bus architecture that supports ingestion, storage and

exploitation of disparate sensor data. Further, this composable architecture model supports

collaborative framework for data analysts and decision makers to access sensor data and exploited

data in real time. The architecture supports on the fly addition and deletion of loosely bound

ingestion/storage/exploitation components without taking down the whole architecture down.

Getting into the details, as mentioned the PSSA can support below logical services:

 Ingestion services (a gateway service to receive sensor data from outside PSS

architecture) provide endpoints, within the architecture for collecting sensor data.

 Exploitation services exploit information (from ingested senor data) by analyzing and

producing appropriate metadata.

 Core services provide high-speed data storage for system management.

 Dissemination services provide client based interfaces to subscribe and publish data to

and from the message bus.

PSSA has a plug and play approach. ―Plug and play‖ means the system does not have to be shut

down to add new capabilities. Interfaces are well defined so anyone can build components that

―plug and play‖ with the system.

PSSA Software Development Kit (SDK): As part of the effort to design and develop the PSSA

composable Message Bus Architecture to ingest, exploit, store and visualize disparate real-time

sensor data, an SDK has been developed in native C/C++ language. This developed PSSA SDK

aptly provides the required API interfaces for any consumer of the PSS Message Bus Architecture,

to build low-level PSSA components like Publisher, Subscriber and Service Provider. As shown in

Figure A-8, these low-level PSSA components can be grouped (according to the custom business

logic) to build high level customized components like Sensor Data Ingestor, Exploitation Service,

Data Storage Service and any helper services like XMPP Message Bridge. Further, the PSSA SDK

has been designed to effectively abstract the architecture and communication level (along with few

media processing level) complexity from the consumer and aid him/her in building the high-level

business logic components that can use the PSS Message Bus Architecture.

96

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Figure B-1: Implementation of Custom Processing Using PSSA SDK

The developed PSSA SDK provides the required API interfaces for any consumer of the PSS

Message Bus Architecture, to build low-level PSSA components like Publisher, Subscriber and

Service Provider. These low-level components can be used individually (as shown in Figure B-1)

or grouped (for building Exploitation algorithms that would require Subscriber and Publisher

components in them) appropriately to build customized components like Video Ingestor, Media

Storage Service and other Exploitation Algorithm Services.

Installation/Quick Start

To Begin:

Download the PSS_SDK library for the language of your project. Include the library in your

project.

To Execute The Directory Service:

1. Launch command prompt.

2. Change directory to the directory where DirectoryService.exe was downloaded to.

3. Pass DirectoryService.exe your endpoint address and lower and upper bound port numbers

as arguments.

DirectoryService tcp://172.16.10.138:5555 6601 6700

97

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

The above highlighted IP address should be the IP address of the computer hosting/running the

directory service.

4. Press enter to execute. The directory service will then launch by listening to services

running on the endpoint address. (At this point no services will be detected).

5. Leave the command window open.

To Load An Existing Ingestor:

NOTE: Make sure you have a directory service running.

1. Launch a text editor to create a command file which will launch your ingestor executable

file by passing the appropriate arguments. All ingestors will need the directory service‘s

endpoint address, lower port number, and upper port number.

An example of the command file to run the RTSP Ingestor can be found below:

RTSPVideoIngestor tcp://127.0.0.1:5555 6901 7000 127.0.0.1 1

rtsp://172.16.24.177/live2.sdp bits-per-second:1000000;buffer-

window:0;width:320;height:240;frames-per-second:29.7;sample-time-

factor:330

2. Save the command file in the same directory as your ingestor executable file.

3. Run the command file.

If directory service is started and running, a new ingestor entry, from the above RTSP Video

Ingestor, it should be registered with the directory service.

Ingestion Services

Ingestion Overview: The ingestion services are responsible for importing the data generated by

sensors and their associated processing systems into the PSSA system. These services are the

point of entry for all external data to the PSSA system. Ingestors create published messages to be

sent to the messaging interface. The messages can contain different content types so ingestors

should accommodate different modalities and delivery formats. Ingestors should know how to build

its message completely meaning the service must know the storage format and sensor ID. Ingestors

provide means to normalize data streams and meta-data with agreed PSSA message event schemas.

After informing the interface of all information, the SDK will publish feed items to the message bus

interface using 0MQ protocols. 0MQ is an API for the transportation of message on the message

bus.

Building New Ingestors

Required Information To Build An Ingestor

 Know the event message schema.

 Content type

98

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 Xml

o GeoRSS simple

o GeoRSS w3c

o Video frames (MPEG-4)

 Content location

 Point

 Longitude, Latitude

 Polygon

 Surrounding area of points

 Context (Details of feed to be published)

 Publisher Title

 Sensor ID

 Timestamp

 Source

 Agree on a sensor ID.

 Know the information regarding the endpoint of the Directory Service in your

Architecture.

 Know how to build the message completely.

 Get publisher address.

 Get content to be published.

 Examples:

o GeoRSS source configuration.

o Media URL.

 Synchronize data streams and meta-data (if required).

 Provide different modalities and delivery formats to normalize data. (EO, RF, Text,

Frame-based, Streaming)

To write an ingestor in C++

1. Add the PSS SDKLib C++ project to your solution (if it is not already).

2. Allocate a port provider by passing the appropriate start and end port numbers. The Port

Provider provides a synchronized allocation mechanism to keep track of valid ports

available.

PortProvider *yourPortProvider = new PortProvider(startingPortRange,endingPortRange);

99

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

3. Create and initialize a new context class object. The context class has multiple

constructors for initializing the 0MQ to transport the message onto the message bus, for the

publishers and subscribers that would be built within this context.

boost::shared_ptr<pss::sdk::Context> yourContext = new Context();

This constructor takes the directory endpoint address, the port provider created in step 2, and the

number of application and IO threads to setup the 0MQ context.

Context(directoryServicesEndpoint,portprovider,numberAppThreads =

DEFAULT_APPLICATION_THREADS, numberIoThreads = DEFAULT_IO_THREADS);

4. Create a published event topic schema. The SDK creates a queue of event topics called

TopicNames.

Push the topic name onto queue using the push_back function. Pass the full topic string that

includes the sensor ID that was agreed on. An example for a GeoRSS event topic is below:

TopicNames YourPublishingTopic;

YourPublishingTopic.push_back("sensor.observation.text.georss:acquired?sensorid

=" + sensorid);

5. Call method to build the publisher. This method requires the publisher‘s name, address,

and queue of topic from step 4 above.

yourContext->buildPublisher(publisherName,publisherAddres,topics)

A publisher object is returned from the SDK so it must be assigned to a created publisher.

An example of this can be seen below:

_yourPublisher = yourContext->buildPublisher(. . .);

6. Create a method that uses business logic to wrap around the SDK publish Event method.

_yourPublisher->publishEvent(publishingTopics, message);

Use the SDK‘s message class functionality to call the wrapper method created above. The

message class takes a created topic that was allocated in step 4 above. An example of this

can be seen below:

100

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Message* message = new Message();

message->addMessagePart(contentId, contentType, data, dataLength, isFirstPart)

Example:

message->addMessagePart("event","text/xml",(void *)(

data.c_str()),data.length(),1);

7. Publish the message by calling the method created in step 6.

Exploitation Services:

Exploitation Overview: Exploitation components need to know what kind of publisher it will be

talking to. The exploitation extends sensor data through meta-data. Exploitation services are

information quality algorithms and metrics off the message bus. Exploitation services use the

Software Development Kit (SDK) in its interface to initialize, subscribe, and create messages. The

SDK receives events, counts message parts, and gets message part by index. These application

services will generate additional meta-data or new data streams that are published to the messaging

interface.

Message Filters: Publishers normalize video data by encoding them into MPEG-4 frames.

Message filters are used to decode these video frames into JPEG‘s or BMP‘s accessible in memory.

The PSS SDK can create and release message filters in the PSS interface known as the message

filter factory. Here a message filter is declared and then initialized by passing the type of filter. The

type below is a MPEG-4 to BMP decoder filter.

boost::shared_ptr<::pss::sdk::MessageFilter> messageFilter;

messageFilter(pss::sdk::MessageFilterFactory::createMessageFilter(PSS_MPEG4_DECODE));

The message filter is then applied within the message interface. The MPEG-4 to BMP filter creates

a PSS_SDK_BMP_STRUCT to store the BMP files. This data structure holds general file

information and DIB specific information.

yourBMPFileStruct = messageFilter->applyfilter(yourSource, sourceLength,

filterLength);

Sample Code:

PSS_MPEG4_DECODE is the filter type of your message.

::boost::shared_ptr<::pss::sdk::MessageFilter>

messageFilter(::pss::sdk::MessageFilterFactory::createMessageFilter(PSS_MPEG4_DECO

DE));

pss_bmpfile *bitmap_ptr = 0;

bitmap_ptr = reinterpret_cast<pss_bmpfile*>(messageFilter-

>applyfilter(static_cast<const void*>(&eventData[0]), eventData.size(),

bitmapSize));

101

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Building New Exploitation Services

To Write a Directory Service Listener Thread:

The PSS system implements threads using the shared Boost library. A boost::thread object

represents a single thread of execution and uses the native CreateThread and related calls. You can

easily write portable code that runs across all major platforms. A boost::thread object is

constructed by passing the threading function or method it is to run. Below are the steps to write a

directory listener thread:

1. Add the PSS SDKLib C++ project to your solution (if it is not already).

2. Initialize a directory service listener thread with the directory service endpoint address and

a created context class object for your exploitation service.

3. Define a static callback method.

4. Provide handler for a notification change.

5. Obtain notification changes from the PSS directory entry data structure.

PSS_DIRECTORY_CHANGE_ACTION is a data structure containing the action taken by a

service (i.e. added, removed). PSS_DIRECTORY_ENTRY_TYPE is a data structure

containing the type of service (i.e. publisher, PSS service).

typedef struct

{

 PSS_DIRECTORY_CHANGE_ACTION action;

PSS_DIRECTORY_ENTRY_TYPE entry_type;

const char* name;

const char* endpoint;

union

{

const char* topic;

const char* service_contract;

};

} PSS_DIRECTORY_ENTRY;

Next we need to obtain the notification change count from the PSS SDK. An example of creating

and passing a callback would look like one below:

static void callback(PSS_DIRECTORY_ENTRY* changes, const unsigned short

change_count, const unsigned long hint)

{

// Use the directory changes entry from the callback

//from the DirectoryServiceObserver

102

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

/// You can use the hint for casting back to the

///appropriate class object, if a valid hint is passed

///intially as below::

// context->buildDirectoryServicesObserver(callback(unsigned

long)this));

}

6. Build the directory service observer by passing it the callback function and a unique ID to

identify itself for casting back to the appropriate class object (hint).

To Write A Subscriber In C++:

1. Add the PSS SDKLib C++ project to your solution (if it is not already).

2. Create a context class object from the PSS SDK.

3. Call the buildSubscriber method by passing in the publisher endpoint and a blank topic.

A new subscriber object will be returned and ready to receive events.

_subscriber = yourContext->buildSubscriber(publisherEndpoint, topicName)

Initialize a new PSS Message object.

Message* msg = new Message();

Receive an event by passing the message object created above and the timeout in

milliseconds. To do this, we call the receiveEvent function included in the SDK.

_subscriber->receiveEvent(eventMessage,

Sample Ingestor Component: It is assumed that directory service is running at

―tcp://127.0.0.1:5555.‖

boost::shared_ptr<pss::sdk::PortProvider> portprovider =

boost::shared_ptr<pss::sdk::PortProvider> (new PortProvider(6666,7777));

boost::shared_ptr<pss::sdk::Context> _context = boost::shared_ptr<Context>(new

Context(Endpoint("tcp://127.0.0.1:5555"),portProvider));

pss::sdk::TopicNames _publishingtopics;

_publishingtopics.clear();

_publishingtopics.push_back(std::string("sensor.observation.text.test:acquired?sensor

id=") + “1234”);

_publisher = _context->buildPublisher("TestIngestor", “127.0.0.1”,

_publishingtopics);

string feed = “TestFeed-it doesn’t follow any event schema for this example”;

103

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

while(true)

{

Message* message = new Message();

message->addMessagePart("event","text/xml",(void*)feed.c_str(),feed.length(),1);

///only event topic is present for this Ingestor

_publisher->publishEvent(_publishingtopics.front(), *msg);

delete message;

}

Sample Subscriber Component: It is assumed that directory service is running at

―tcp://127.0.0.1:5555‖ and the above Ingestor can be reached at ―tcp://127.0.0.1:6666.‖

///PortProvider is not needed for the subscriber

boost::shared_ptr<pss::sdk::PortProvider> portprovider =

boost::shared_ptr<pss::sdk::PortProvider> (new PortProvider(7777,8888));

boost::shared_ptr<pss::sdk::Context> _context = boost::shared_ptr<Context>(new

Context(Endpoint("tcp://127.0.0.1:5555"),portProvider));

boost::shared_ptr<pss::sdk::Subscriber> subscriber_ =

boost::shared_ptr<pss::sdk::Subscriber>(context_-

>buildSubscriber(Endpoint("tcp://127.0.0.1:6666"),""));

while(true)

{

Message* msg = new Message();

subscriber_->receiveEvent(*msg, 1000);

/// Get the first part from the message

const std::vector<unsigned char>& eventdata = msg->messagePart(0);

std::string eventdataT((const char*) &eventdata[0], eventdata.size());

std::cout << std::endl << “From the Sample Ingestor” << eventdataT << std::endl;

delete eventdata;

delete msg;

 Data/Media Retrieval Services:

Retrieval Service Overview: These Retrieval components provide access to data stored internally

within the PSS system or provide ―gateways‖ to retrieve data from external systems. The Retrieval

component provides an abstract interface to hide the physical location and structure of the data.

Open standards protocol can be used to retrieve this archived/live/processed data. Customized

interfaces can be ―plugged‖ into the system to meet application specific retrieval processing needs.

To Write A Retrieval Service In C++:

1. Create a context class object from the PSS SDK.

104

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

2. Build a new service provider by passing the service provider‘s name, network address, and

service contract.

yourContext->buildServiceProvider(PROVIDER_NAME, NETWORK_ADDRESS,

SERVICE_CONTRACT);

3. Set up a request handler by passing the built service provider. The handler waits to receive

a request. If a request is not received, destroy the session and continue waiting.

boost::scoped_ptr<pss::sdk::Service> requestHandler(yourContext->

buildServiceProvider(PROVIDER_NAME, NETWORK_ADDRESS, SERVICE_CONTRACT));

if(!requestHandler->receiveRequest(request, 1000))

{

destroyUnneededSessions();

continue;

}

4. Once a request is received, parse the requested message (XML).

5. Create a response message by passing all parts of the message. This includes the content id

and type, the data and data length, and whether or not it is the first part of the message.

 pss::sdk::Message response;

response.addMessagePart("top","text/xml",result.c_str(), result.length(),

true);

6. Send the response.

requestHandler->sendResponse(response);

105

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

APPENDIX C – JAVA BINDINGS FOR PSS SDK

PSS SDK: The developed PSSA SDK has been successfully employed to build various customized

components in the PSS architecture that were developed in C++ language. But, as mentioned

earlier, the diligent approach to develop the PSSA SDK in native C/C++ language aided in

generating native C dll for the PSSA SDK APIs. This native PSSA SDK C dll provides

―Language Interoperability‖ across other languages like MATLAB® , C#, Python and JAVA.

Thus, this ―Language Interoperability‖ of the PSSA SDK provides the opportunity for the

consumers developing components in other languages (other than C or C++) to port or integrate

their existing components with PSS Message Bus Architecture with minimal development effort.

Further, it is been demonstrated effectively that the PSS SDK can used in C# (.NET framework,

employed to build PSSA dashboard, which is completely integrated (can Publish and Subscribe)

with PSS Message Bus Architecture using the PSSA SDK) and in MATLAB® (used to build PSS

Info Quality simulator employing the UALR Image Quality Algorithms), which is successfully

ingesting (publishing) data into the PSSA using the PSSA SDK).

Figure C-1: Illustration of Java Bindings for the PSSA SDK

The developed Java bindings for PSSA SDK provides the required Java Native Interface (JNI) API

callable wrapper class/interfaces for any Java class in the application layer to employ the Native

PSSA SDK C dll at runtime. The function signatures exposed to the application layer would be

same as that of Native PSSA SDK, when built with Simplified Wrapper and Interface Generator

(SWIG), which in turn introduces a SWIG layer (not shown in the figure) that would hide the Java‘s

name decoration in JNI wrapper interface.

106

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Since, one of the primary goals of this project is to provide capabilities to integrate the developed

PSS Message Bus Architecture with prominent cutting-edge processing and visualization tools like

OpenLST and AVTAS Multi-Agent Simulation Environment (AMASE), an agent-based simulation

software for UAV mission planning and Control), which are developed in Java language, there

exists a need to explore and develop the java bindings for the PSSA SDK APIs.

Developed Java Bindings for PSS SDK Using SWIG: Sun‘s Java Development Kit, provides a

programming framework feature called JN to call native APIs written in C/C++ languages. But, the

C dll, along with the native library has to be compiled with appropriate JNI name decorations into a

new JNI dll that would be callable from a simple java class present in any java package or module.

Thus, employing this standard procedure to generate the appropriate java bindings for PSSA SDK

would enable to use the SDK APIs from a java class as shown in Figure C-1. To reduce the

development effort and time, we have employed SWIG to generate the above mentioned java

bindings for the PSSA SDK. Further, employing the SWIG to generate the java bindings, it is easy

to preserve most of the function signatures used in the native C dll, as shown below.

Native C Function Call:

// Initializes the library and must be called

// (or PSS_InitializeEx) before any other function

// is invoked.

long PSS_Initialize(char* directory_endpoint, int starting_port_number, int

ending_port_number);

Exposed Java Interface Function Call:

int PSS_Initialize(String directory_endpoint, int starting_port_number, int

ending_port_number);

It can be noticed that apart from the data type mappings from C to Java language, the signature of

the function stays the same, which is helpful to easily maintain the SDK code and provide a unified

tutorials or documentation for the APIs. The appropriate practices needed to call native dll from the

java (http://www.swig.org/tutorial.html) would still apply like for example the JNI dll

(PSS_SDK_JNI) has to be loaded into the application before referencing any of the PSS SDK

functions like below:

try {

System.loadLibrary("PSS_SDK_JNI");

} catch (UnsatisfiedLinkError e)

{

System.err.println("Native code library failed to load\n" + e);

System.exit(1);

}

And the APIs calls from the application would be called with parameters as below:

107

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

PSS_SDK_JNI.PSS_Subscribe ("tcp://192.168.10.112:6601",

"sensor.observation.media.video:acquired", subp);

The generated Java bindings for the PSS SDK have been successfully integrated with the

LSTVisulization module of the OpenLST project by building a Video Frame PSS Subscriber and

Directory Service Listener, with minimal helper classes to stream live IP camera directly to

OpenLST platform. Figure C-2 provides the snapshot of the Qbase PSS Message Bus Architecture

driven video being integrated in the OpenLST.

Figure C-2: Screenshot Showing Integration with OpenLST using Java SDK

The developed Java bindings for PSS SDK have been successfully employed to integrate the

OpenLST platform with PSS Message Bus Architecture. The screenshot in Figure C-2 shows the

capability of Java bindings of PSS SDK to build a live video stream subscriber that can receive live

video frames from a remote IP camera via the PSS Message Bus Architecture and use OpenLST

modules to display the video frames in real time.

108

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

APPENDIX D – Synchronization Issues

Temporal Synchronization: Time synchronization of multiple sensor feeds is a critical aspect of

persistent surveillance and layered sensing applications. This makes time one of the most important

attributes that must be captured for the storage and retrieval of persistent surveillance data. In order

to perform queries and compare results across multiple layers of sensor data, a consistent temporal

frame of reference must exist among the layers. A consistent temporal frame of reference allows

events identified in one sensor‘s coverage area to be correlated with events in the coverage areas of

other sensors. This, in turn, allows more sophisticated analytics to be performed on the sensor data.

For example, if we are tracking a vehicle across the field of view of a Wide Area Persistent

Surveillance (WAPS) sensor, then we can predict when that vehicle will enter the field of view of a

high resolution ground camera. The ground camera in turn can provide much more detailed

information about the vehicle then can the WAPS sensor. This information can then be used to

increase the level of certainty that the WAPS sensor is tracking the correct vehicle. Time

synchronization between the WAPS sensor and the ground camera sensors is critical for this

scenario to work.

Unfortunately there is no way to guarantee the time synchronization of the individual autonomous

sensors that may participate in a layered sensing scenario. In order to accommodate the wide

variety of sensors that could be used in conjunction with the PSS system, we have established the

conventions outlined in this section of the document.

The PSSA defines three time concepts which are used to establish a temporal frame of reference for

the sensor data captured:

1. Acquisition time – This is time information provided by the sensor in the metadata that

accompanies the sensor data. This data may not be present for every type of sensor. Even

if it is present, the sensor time could be based on a number of different time standards —

GPS, International Atomic Time (TAI), National Institute of Standards and Technology

(NIST) UTC, or an internal time clock. In addition, there are a number of formats by

which time could be represented (e.g. GPS Week/Seconds, ISO 8601, number representing

the time elapsed since a specific date — Julian Date, Modified Julian Date (JD, MJD),

Unix epoch, etc.)

2. Ingestion time – this is the system time at which the sensor ingestion component received

the sensor data. The system time is based on the NIST UTC time reported by a Stratum 2

Network Time Protocol (NTP) server (or for more precise time, a Precision Time Protocol

(PTP) server). This time is used to ensure that, in a distributed system, the time clocks of

each of the ingestion systems are synchronized.

3. Presentation time – this is the normalized time used by the persistent surveillance sensor

to synchronize the sensor data from this sensor with data received from other sensors.

Since not all sensors will have synchronized time clocks, it is the responsibility of the

ingestion component to determine the most likely time span during which the sensor data

was collected. This could be based upon the acquisition time, the ingestion time or a

combination of the two depending upon the type of sensor for which the data is being

ingested. In order to accommodate variations in the precision of the presentation time

between different sensor types, the precision of the time measurement is stored along with

the time as the base 10 logarithm of the number of nanoseconds of precision represented by

109

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

the time value. For example, a value of 0 represents one nanosecond precision, a value of

three represents one millisecond of precision, and a value of six represents one second of

precision. For query and reporting purposes, the sensor reading is treated as having

occurred during the entire period represented by the Presentation time and the precision.

For example, if I am looking for a sensor reading from a particular sensor that occurred at

12:00:00 with a time precision value of 6 (meaning 1 second), the system will return all

sensor readings that occurred between 11:59:59.5 and 12:00:00.5. The system will

consider a sensor reading to have occurred within that interval if the combination of the

presentation time and the time precision of the reading fall within that interval. For

example, a sensor reading with a Presentation Time of 12:00:00.525 with a time precision

of 5 (meaning 1/10 second precision) will fall into the range specified.

NOTE: In addition to precision, the level of confidence associated with the presentation time

should be captured as additional information quality metadata (see next section). This level of

confidence could vary based on the source of the presentation time and various

historical/statistical factors.

Time-Related Information Quality Metadata: The time metadata associated with each sensor

reading includes all of the times listed above along with the information quality metadata and

statistics listed below:

 Accuracy/Reliability of the Acquisition Time Data – this information would typically be

reported by the sensor as part of its metadata stream. If acquisition time is not provided

by the sensor then this metadata will not be present.

 Accuracy/Reliability of the Ingestion Time Data – this information is determined by the

ingestion component used to bring the sensor data into the system.

 Accuracy/Reliability (confidence) of the Presentation Time Data – this information is

determined by the ingestion component based upon whatever algorithm/conversions are

used to determine the presentation time.

 Latency statistics:

 Delta between Acquisition Time and Ingestion Time, if known.

 Average delta (moving average).

 Deviation of current delta from moving average.

 Deviation of current delta from expected delta.

 Acquisition time statistics:

 Delta between current acquisition time and previous acquisition time.

 Average delta (moving average).

 Deviation of current delta from moving average.

 Deviation of current delta from expected delta.

 Ingestion time statistics:

 Delta between current ingestion time and previous ingestion time.

110

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

 Average delta (moving average).

 Deviation of current delta from moving average.

 Deviation of current delta from expected delta.

The ingestion component is responsible for tracking this quality metadata and also providing a

presentation time for the sensor data. The presentation time is a time including a measure of

precision for which the ingestion component is confident that the sensor reading was captured. A

confidence metric is reported as part of the information quality metadata associated with the

presentation time that reflects the accuracy/reliability of the presentation time span.

Ingestion End-Point Component Responsibilities: It is the responsibility of each sensor ingestion

end-point to timestamp the sensor data with the time at which the data was received by the system.

This point is considered the ingestion time. The ingestion time may be used to determine the

presentation time for the data.

As mentioned above, it is also the responsibility of the ingestion end-point to determine the

presentation time that will be used to index the sensor data received.

Time Storage Formats

Acquisition Time Storage Format: The storage format for the acquisition time reported by the

sensor is dependent upon the sensor and will be maintained in the same format as that reported by

the sensor. This will allow time- based queries for data from a single sensor feed to be performed

using the native time format of the sensor.

NOTE: Any queries that include data spanning more than one sensor feed must use the

presentation time.

Ingestion and Presentation External Time Representation: The ISO 8601:2004 standard for

representing UTC time will be used for all external representations of ingestion time and

presentation time. Under this standard there are several formats that can be used, however, to

simplify display and comparison, we will adopt the following format as our standard: ―YYYY-

MM-DDThh:mm:ss.ssssssZ.‖

Decomposing this string: ―YYYY‖ represents the 4 digit year, ―MM‖ represents the two digit

month, ―DD‖ represents the two digit day, ‖T‖ separates the date portion of the time from the

hours/minutes/seconds portion, ―hh‖ represents the two digit hour (0 to 23), ―mm‖ represents the

two digit minute, ―ss.ssssss‖ represents the second including fractional seconds to nanosecond

precision, and the ―Z‖ at the end indicates the time is represented as UTC.

Precision can be indicated by the number of digits used to represent the time value. For example:

―1970-01-01T00:00:00.000000‖ indicates a precision of 1 nanosecond, ―1970-01-01T00:00:00‖

indicates a precision of 1 second, and ―1970-01-01T00:00‖ represents a precision of 1 minute.

Ingestion and Presentation Internal Time Representation: To conserve storage space and

simplify time comparisons, internally all-time values will be stored using the Microsoft Windows

FILETIME structure. This structure stores a 64-bit signed integer value stamp for which the value

0 represents the beginning of the year 1601 on the Gregorian calendar and for which each integer

value represents a 100 nanosecond time interval. This provides a date range of approximately

58,000 years (roughly 27000BC to 30000AD). As defined by Microsoft, the value stored in this

111

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

structure represents UTC time which means the time value is adjusted whenever leap seconds are

used to keep UTC time in sync with the earth‘s rotation. From a persistent surveillance perspective

this introduces the potential for temporal discontinuities within the data (i.e. any time a leap second

is added, it will appear that time is repeating itself for that one second – if a leap second is removed,

it appear as a one second ―hole‖ in time – see the section below on leap seconds for more details).

In order to avoid these temporal discontinuities, the PSSA definition of this value will be based on

the international atomic time scale known as TAI. The PSSA SDK will provide functions to

convert UTC and GPS time to and from TAI by adding/subtracting the appropriate number of leap

seconds.

NOTE: The PSSA database will need to maintain a table to track changes to the offset between TAI

and UTC (TAI is currently 34 seconds ahead of UTC). The offset between TAI and GPS time is fixed

at +19 seconds (TAI is 19 seconds ahead of GPS time).

Precision information regarding the time value is stored internally along with the time value. The

precision value is a floating point value that represents the base 10 logarithm of the precision of the

time value in nanoseconds (e.g. for one nanosecond of precision the value is 0, for one millisecond

of precision the value is 3, for one second of precision the value is 6, etc.)

Leap Seconds: Due to irregularities in the Earth‘s rotation, the addition or subtraction of a leap

second is occasionally needed to bring UTC time into alignment with the true solar time (a.k.a.

UT1). The International Earth Rotation and Reference Systems Service (IERS) determine when a

leap second should be inserted (or removed). On most computer systems, the addition of a leap

second is accommodated by setting the system clock back by 1 second when the leap second is

added – this typically occurs when the computer receives an update from an NTP server. As a

result, the possibility exists that an event occurring just before the clock is set back and an event

occurring just after the clock is set back will appear to have occurred in a different order. This

situation is referred to as a temporal discontinuity.

Time discontinuities can also occur as a result of manual adjustments to the reference clock being

used by the system as well.

The PSSA SDK in conjunction with the PSSA Time Server will handle time discontinuities

associated with leap seconds and will provide the correct time to ingestion components. The

ingestion components are responsible for handling any time discontinuities associated with

acquisition time data provided by the sensor.

NOTE: Sensors that use GPS time should not experience this condition.

112

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

PSSA Time Server: As part of the implementation of the PSS physical architecture, an NTP Time

server will be specified to provide time synchronization for all of the hardware components of the

PSS system. The NTP time server is a hardware platform that synchronizes at regular intervals to

the WWVB (the Standard Time and Frequency Station, 60KHz, Fort Collins, Colorado) long-wave

radio broadcast and/or the GPS timestamp provided by the GPS satellite network. This service will

ensure that the ingestion times recorded with the sensor data across the PSSA are accurate to within

+/- 10 milliseconds of actual UTC time.

If more accurate time synchronization is desired, a PTP (– IEEE 1588) time server can be installed

and compatible hardware/software installed on each of the hardware components of the system to

achieve time synchronization to within 1 microsecond of UTC time.

Time-Based Queries: There are several forms that a time-based query for sensor data can take.

These are enumerated below:

1. Retrieve the sensor readings captured between time t1 and time t2.

2. Retrieve the latest sensor reading.

3. Retrieve the sensor reading closest to time t1.

4. Retrieve X number of sensor readings captured after time t1, if X = 0, all sensor readings

after t2 are returned. Sensor readings are returned in chronological order.

5. Retrieve X number of sensor readings captured prior to time t2. If X = 0, all sensor

readings prior to t2 are returned. Sensor readings are returned in chronological order.

The presentation start time and end time are based on the combination of the presentation time and

the presentation time precision value that are stored with the sensor reading. The presentation time

stored with the sensor reading is considered to be the midpoint of the range specified by the

precision value. For example, if the precision value represents a precision of one second and the

presentation time is 12:00:00.000000 then the presentation start time is 11:59:59.500000 and the

presentation end time is 12:00:00.500000. These values are used to determine what data should be

returned as the result of a query. To determine whether or not a sensor reading should be returned,

the PSS retrieval components apply the following rules for each scenario listed above:

1. Returns the reading if presentation start time > t1 or presentation end time < t2

2. Returns the sensor reading with the latest presentation end time.

3. Returns the sensor reading for which the midpoint of the presentation start time and end

time is closest to t1

4. Returns earliest X sensor readings for which the presentation end time > t1

5. Returns latest X sensor readings for which the presentation start time < t2

The following examples demonstrate how these queries could be performed using WFS Simple

service requests (WFS Simple is an Open Geospatial Consortium standard for web-based

spatial/temporal queries).

NOTE: Times are specified according to the ISO 8601:2004 standard.

113

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Example 1: Get all webcam sensor readings located within the bounding box region delineated by

39.98N, 83.00W and 40.02N, 83.01W between 15:18:22.0183600 EST and 15:33:22.0183600 EST

on February 25, 2010.

https://qbasesensorplex.com/sensor/webcams/wfs?service=WFSSIMPLE&R

EQUEST=GetFeature&BBOX=-83.00,39.98,-83.01,40.02&TIME=2010-02-

25T15:18:22.0183600-05:00/2010-02-25T15:33:22.0183600-05:00

This example uses the TIME parameter of the WFS Simple service request to specify the 15 minute

time interval in which we are interested.

Example 2: Get the last 30 sensor readings for webcam cmh042.

https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSI

MPLE&REQUEST=GetFeature&TIME=/2020-02-

25T15:33:22.000Z&MAXFEATURES=30

Since the TIME parameter specifies only an end time and that end time is some time in the future,

our WFS Simple service request handler interprets this request to be for the latest 30 sensor

readings (as specified by the MAXFEATURES parameter).

Example 3: Get the sensor reading for webcam cmh042 that is closest to the time

15:18:22.0183600 EST on February 25, 2010

https://qbasesensorplex.com/sensor/webcam/wfs?service=WFSSIMPLE&RE

QUEST=GetFeature&TIME=2010-02-25T15:18:22.0183600-05:00/2010-02-

25T15:18:22.0183600-05:00&MAXFEATURES=1

Since the start time and the end time in the TIME parameter are set to the same value, our WFS

Simple service request handler interprets this request to be for the sensor reading closest to the

specified time. It is up to the application to decide, based upon the presentation time of the sensor

reading returned, whether or not it is close enough to the specified time to be used. If

MAXFEATURES is greater than 1, then the features closest to the specified time are returned in

chronological order (earliest to latest) up to the number specified by MAXFEATURES.

Example 4: Get the first 60 sensor readings for webcam cmh042 that occurred after 2010-02-

25T15:18:22 EST on February 25
th

, 2010.

https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSI

MPLE&REQUEST=GetFeature&TIME=2010-02-25T15:33:22.000-

05:00&MAXFEATURES=60

https://qbasesensorplex.com/sensor/webcams/wfs?service=WFSSIMPLE&REQUEST=GetFeature&BBOX=-83.00,39.98,-83.01,40.02&TIME=2010-02-25T15:18:22.0183600-05:00/2010-02-25T15:33:22.0183600-05:00
https://qbasesensorplex.com/sensor/webcams/wfs?service=WFSSIMPLE&REQUEST=GetFeature&BBOX=-83.00,39.98,-83.01,40.02&TIME=2010-02-25T15:18:22.0183600-05:00/2010-02-25T15:33:22.0183600-05:00
https://qbasesensorplex.com/sensor/webcams/wfs?service=WFSSIMPLE&REQUEST=GetFeature&BBOX=-83.00,39.98,-83.01,40.02&TIME=2010-02-25T15:18:22.0183600-05:00/2010-02-25T15:33:22.0183600-05:00
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=/2020-02-25T15:33:22.000Z&MAXFEATURES=30
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=/2020-02-25T15:33:22.000Z&MAXFEATURES=30
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=/2020-02-25T15:33:22.000Z&MAXFEATURES=30
https://qbasesensorplex.com/sensor/webcam/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=2010-02-25T15:18:22.0183600-05:00/2010-02-25T15:18:22.0183600-05:00&MAXFEATURES=1
https://qbasesensorplex.com/sensor/webcam/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=2010-02-25T15:18:22.0183600-05:00/2010-02-25T15:18:22.0183600-05:00&MAXFEATURES=1
https://qbasesensorplex.com/sensor/webcam/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=2010-02-25T15:18:22.0183600-05:00/2010-02-25T15:18:22.0183600-05:00&MAXFEATURES=1
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=2010-02-25T15:33:22.000-05:00&MAXFEATURES=60
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=2010-02-25T15:33:22.000-05:00&MAXFEATURES=60
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=2010-02-25T15:33:22.000-05:00&MAXFEATURES=60

114

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

Since the TIME parameter specifies only a start time, our WFS Simple service request handler

interprets this request to be for the first 60 sensor readings (as specified by the MAXFEATURES

parameter) following the time specified by the TIME parameter.

Example 5: Get the last 20 sensor readings for webcam cmh042 that occurred prior to 2010-02-

25T15:18:22 EST on February 25
th

, 2010.

https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSI

MPLE&REQUEST=GetFeature&TIME=/2010-02-25T15:33:22.000-

05:00&MAXFEATURES=20

Since the TIME parameter specifies only an end time, our WFS Simple service request handler

interprets this request to be for the latest 20 sensor readings (as specified by the MAXFEATURES

parameter) prior to the time specified by the TIME parameter.

Spatial Synchronization: Spatial synchronization is just as important as temporal synchronization

in a layered sensing environment. Knowing where a sensor is located and the spatial dimensions of

its field of view are critical to providing a comprehensive situational awareness and exploitation

capability. For example, an image analyst viewing data from a wide area persistent surveillance

sensor feed could task ground-based cameras to zoom in on a suspect vehicle that is being tracked

using the wide area sensor data. This functionality will only work effectively if both the wide area

sensor and the ground camera are or can be synchronized to a common spatial reference system.

At a minimum, for every sensor reading, the PSS system needs to know the two-dimensional area of

coverage of the sensor reading (e.g. ground footprint) in order to index it and spatially relate it to

other sensor readings. In many cases, the spatial metadata provided by the sensor will not include

the area of coverage. In these cases, it is the responsibility of the ingestion component to determine

the area of coverage based on known information about the sensor and the metadata provided by the

sensor. The calculation to determine the area of coverage will vary from sensor to sensor.

However, in general it can be determined from the external location and orientation of the sensor

coupled with knowledge about the internal configuration of the sensor (e.g. CCD size and

orientation, lens focal length and distortion characteristics, etc.).

NOTE: It is important for the ingestion component to determine the area of coverage as quickly as

possible, particularly on high frame rate data feeds. In general, it is better to compute an

approximate area of coverage using a simple calculation than to fall behind the data feed using a

more complex calculation. If a more accurate area of coverage is required, it should be deferred to

an exploitation component.

If the location, orientation and zoom level of a camera sensor is fixed, then the footprint of the

sensor will be fixed as well, so it does not need to be recalculated with every sensor reading. For

fixed camera sensors that have Pan, Tilt, and Zoom (PTZ) capability, the PTZ values must be

included in the metadata so that the spatial coverage area can be calculated. For moving sensors, the

sensor location (longitude, latitude, altitude) is constantly changing and therefore must be included

in the sensor metadata.

https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=/2010-02-25T15:33:22.000-05:00&MAXFEATURES=20
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=/2010-02-25T15:33:22.000-05:00&MAXFEATURES=20
https://qbasesensorplex.com/sensor/webcam/cmh042/wfs?service=WFSSIMPLE&REQUEST=GetFeature&TIME=/2010-02-25T15:33:22.000-05:00&MAXFEATURES=20

115

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

In addition, the exterior orientation (omega, phi, kappa) of the sensor may change as a result of

changes in the attitude (i.e. roll, pitch, yaw) of the platform or gimbal on which the sensor is

mounted. In some cases for camera-based sensors, the focal length of the lens (i.e. zoom) may be

variable as well. All of these parameters, if they change, must be included in the metadata

associated with the sensor reading. For non-image based sensors there may be similar variable

parameters that could affect the coverage area of the sensor (e.g. sensitivity settings). If this is the

case, then those parameters must be included in the sensor metadata so that the area of coverage can

be calculated.

For moving sensors or sensors with a variable coverage area, it is the responsibility of the ingestion

component to quickly establish an initial coverage area (ground footprint) for the sensor reading

unless this information is already provided as metadata by the acquisition hardware/software.

NOTE: Downstream exploitation algorithms can further refine the coverage area, if needed. It is

also the responsibility of the ingestion component to provide an estimate of the accuracy of the

coverage area as part of the Information Quality Metadata.

Location Related Information Quality Metadata: The metadata used to determine the initial

coverage area of the sensor should be evaluated to determine the accuracy of that coverage area. For

instance, if GPS data is used to locate the platform, the dilution of precision (DOP) of the GPS data

should be captured as information quality metadata. Oftentimes, the DOP is provided by the GPS

receiver itself as part of the metadata. However, if the receiver does not provide this information, a

theoretical DOP for any given time and location can be predicted using a GPS Satellite Almanac

(ephemeris data) and assumptions regarding which satellites are visible to the receiver. The DOP

value can be used to determine whether or not to use the GPS data. A general rule of thumb is to

take the published accuracy of the GPS device and multiply it by the DOP Value to get a maximum

error for the GPS reading. For example, if the accuracy of the GPS device is +/- 3m and the DOP

value is 3, then the actual location is within 9m of the GPS reading (3m x DOP of 3 = 9m). For

reference, the table below lists ratings of DOP values from two different Internet sources.

Table D-1: Ratings of DOP Values

DOP

Value0

DOP

Value0

Rating Description

1 1 Ideal This rating is the highest possible confidence level to be used for

applications demanding the highest possible precision at all times.

2-3 1-2 Excellent At this confidence level, positional measurements are considered accurate

enough to meet all but the most sensitive applications.

4-6 2-5 Good This rating represents a level that marks the minimum appropriate for

making business decisions. Positional measurements could be used to make

reliable in-route navigation suggestions to the user.

7-8 5-10 Moderate Positional measurements could be used for calculations, but the fix quality

could still be improved. A more open view of the sky is recommended.

9-20 10-20 Fair This rating represents a low confidence level. Positional measurements

should be discarded or used only to indicate a very rough estimate of the

current location.

116

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

These descriptors should be viewed as guidelines since the accuracy level of GPS devices

sometimes can vary widely (e.g. if a GPS device has a published accuracy of 6m, than even a DOP

of 1 will only ensure accuracy to within 6m).

Some GPS devices support differential GPS which can significantly increase the accuracy of the

GPS reading (typically better than one meter horizontal accuracy within 100 nautical miles of a

DGPS transmitting site).

For spatial measurements, we are primarily concerned with the Positional Dilution of Precision

(PDOP) and the Horizontal Dilution of Precision (HDOP). HDOP represents the dilution of

precision in 2 dimensional space (latitude/longitude) and PDOP represents the dilution of precision

in 3 dimensional space (latitude/longitude/altitude (LLA)).

Normalization of Spatial Data: In order to be able to index, query and compare spatial metadata

from a variety of sensors, it is important to store the spatial metadata associated with a sensor

reading using a common spatial frame of reference. The common spatial coordinate reference

system used by the PSSA is the LLA coordinate system based on the WGS-84 geodetic datum

(EPSG:4326) using meters as the unit of measure. Minimally, the spatial data required for PSS (e.g.

area of coverage) is indexed in two-dimensions to simplify index and query processing.

If desired, three dimensional indexes including altitude information can also be stored and indexed

to support more sophisticated analytics and exploitation algorithms. Any distance measures

(including altitude) stored in the database should be stored in meters to ensure consistency between

data sources.

NOTE: Image data may be projected or warped to a coordinate system other than the WGS-84

coordinate system mentioned above. If this is the case the Spatial Reference System for the image

should be stored along with the affine transform used to locate and orient the image within the

spatial reference system.

117

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

LIST OF DEFINITIONS

Event Collaboration The application integration pattern upon which the PSSA is based.

Processing components are loosely coupled using a messaging model

in which data sources publish events and processing components

subscribe to specific event topics.

Exploitation Algorithm An algorithm that operates on the sensor data to enhance the

usefulness of the data in some way. For example, an exploitation

algorithm could measure and/or improve the quality of the sensor data

or it could create new data by analyzing the sensor data and

comparing or combining it with data captured previously or with data

captured by other sensors.

Layered Sensing The use of multiple types (―layers‖) of remote sensing technology to

simultaneously provide different views of overlapping geographic

regions and disparate types of information, collected at different

times.

Metadata Any contextual information that relates to a specific sensor reading.

This could include time, location, sensor parameters, environmental

conditions, or anything else related to the sensor reading that is

needed to fully exploit the data captured by the sensor. Metadata can

come from the sensor or it may be generated by components of the

PSS system as the sensor data is being processed.

Observation See ―Sensor Reading‖

Persistent Surveillance The use of remote sensing technology to continuously monitor a

geographic region.

PSSA Cloud or PSS Cloud This is the messaging system that forms the core of the PSSA.

Through the use of the PSSA SDK, it transparently provides the

connectivity between various components of the PSSA system.

Sensor Data The data (sensor reading and related metadata) associated with a

specific sensor including new metadata derived from the sensor

reading and/or metadata.

Sensor Reading The data captured by the sensor at a given point in time and

represents the actual bits generated by the sensor as it converts the

sensed data into digital form.

118

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

LIST OF ACRONYMS

AFRL Air Force Research Laboratories

AMASE AVTAS Multi-Agent Simulation Environment

API Application Programming Interface

ArcGIS Not a true acronym, this is the registered name of one of

ESRI‘s (q.v.) products. See also GIS.

ASIC Application Specific Integrated Circuits

AU Alliance University

AVTAS Aerospace Vehicles Technology Assessment and

Simulation

BMP Bitmap graphics file

CIMIS California Immigration Management Information Service

CORS Continuously Operating Reference Stations

CoT Cursor on Target

COTS Commercial, off-the-shelf product

CPU Central Processing Unit

CUAHSI Consortium of Universities for the Advancement of

Hydrologic Sciences

CWLR Cibola Wild Life Refuge

DCGS Distributed Common Ground System

DGPS Differential GPS

DIB DCGS Integrated Backbone

DSO Directory Service Observer

DSS Data Storage Service

DoD Department of Defense

DOP Dilution of Precision

EO Electro-Optical

ESI External Service Initiator

ESRI Environmental Systems Research Institute

ET Evapotranspiration

EVI Enhanced Vegetation Index

FFMPEG Fast-Forward MPEG

FPGA Field-Programmable Gate Array

FPS Frames per Second

GIS Geographic Information System

GPS Geographic Positioning System

GPU Graphics Processing Unit

119

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

GeoRSS Geographically Encoded Objects Really Simple

Syndication

GOTS Government Off-The-Shelf

GP Great Plains

HTTP Hypertext Transport Protocol

IED Improvised Explosive Device

IERS International Earth Rotation & Reference Systems

IMU Inertial Measurement Unit

IP Internet Protocol

ISR Intelligence Surveillance & Reconnaissance

JD Julian Date

JNI Java Native Interface

JPEG Joint Photographic Experts Group

LANDSAT Land Remote Sensing Satellite System

LCR Lower Colorado Region

LCRAS Lower Colorado River Accounting System

LGPL Lesser General Public License (GNU),

LLA Latitude/Longitude/Altitude

MATLAB Matrix Laboratory

MJD Modified Julian Date

MJPEG Motion JPEG. See also JPEG.

MODIS Moderate Resolution Imaging Spectro-Radiometer

MPEG Moving Pictures Expert Group

MSRS Media Storage Retrieval Service

NDVI Normalized Deviation Vegetation Index

NFS Network File System

NIST National Institute of Standards and Technology

NOAA National Oceanic and. Atmospheric Administration

NTP Network Time Protocol

ODA Ohio Department of Agriculture

OGC Open Geospatial Consortium Open

LST Open Layered Sensing Testbed

PCIT PSSA Components & Other Infrastructure Tracker

PDOP Positional Dilution of Precision

PSS Persistent Sensor Storage (used interchangeably with

PSSA)

PSSA Persistent Sensor Storage Architecture

PTP Precision Time Protocol

120

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

PTZ Pan, Tilt, Zoon

PVID Palo Verde Irrigation District

QDT Qbase Data Transformer

ReSET Remote Sensing EvapoTranspiration

RSS Really Simple Syndication or Rich Site Summary

RSST Registered Sensor Status Tracker

RTSP Real-Time Streaming Protocol

RVDS RTSP Video Dissemination Service

SAR Satellite Synthetic Radar

SAS Sensor Alert Service

SAS/SATA Serial Attached SCSI /Serial Advanced Technology

Attachment

SATE Summer at the Edge

SCS Remote Launcher Service

SDK Software Development Kit

SEBAL Surface Energy Balance Algorithm for Land

SFVM Sensor Feed Visualization or Manipulation

SPS Sensor Planning Service

SOS Sensor Observation Service

S-SEBI Simplified-Surface Energy Balance Index

SSIM Structural Similarity

SWE Sensor Web Enablement

SWIG Simplified Wrapper Interface Generator

TAI International Atomic Time

TCP Transmission Control Protocol

TESV Text Event Stream Visualization

UAV Unmanned Aerial Vehicle

URL Uniform Resource Locator

USBR US Bureau of Reclamation

USDA US Department of Agriculture

USGS US Geological Survey

UTC Universal Time Coordinated

VLC Video LAN Client

W3 Worldwide Web Consortium

WAPS Wide Area Persistent Surveillance

WBI-ICC Wright Brothers Institute - Innovation and Collaboration

Center

WCS Web Coverage Service (OGC Standard)

121

Distribution A: Approved for public release; distribution is unlimited. 88ABW/PA cleared on 11 July 2012,
88ABW-2012-3865

WCF Windows Communication Foundation

WFS Web Feature Service (OGC Standard)

WMS Web Mapping Service (OGC Standard)

WNS Web Notification Service

WWVB Not a true acronym, this refers to the Standard Time and

Frequency Station in Fort Collins, Colorado, long-wave

60KHz radio broadcast.

WSU Wright State University

XML eXtensible Markup Language

XMPP eXtensible Messaging & Presence Protocol

XSLT eXtensible Stylesheet Language Transformations

YATE Year at the Edge

